High-efficiency neutral-point-clamped transformerless MOSFET inverter for photovoltaic applications

High-efficiency neutral-point-clamped transformerless MOSFET inverter for photovoltaic applications

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Here, a highly efficient MOSFET neutral-point-clamped (M-NPC) transformerless inverter is proposed for photovoltaic (PV) applications. By employing super-junction metal–oxide–semiconductor field-effect transistor (SJ-MOSFET) as well as silicon carbide (SiC) diodes, high efficiency is achieved. Furthermore, the common-mode voltage (CMV) is completely clamped at half of the input voltage with clamping branch. Therefore, leakage current is eliminated. The performances of different topologies, in terms of CMV, leakage current, total harmonic distortion (THD), losses, and efficiency, are compared with the proposed M-NPC topology. The analyses are carried out theoretically via MATLAB/Simulink, and further validated with experimental tests. The experimental results show maximum efficiency of 98.5% and European efficiency of 97.65%.


    1. 1)
      • 1. Suan, F.T.K., Rahim, N.A., Ping, H.W.: ‘Modeling, analysis and control of various types of transformerless grid connected PV inverters’. Proc. IEEE Clean Energy and Technology, June 2011, pp. 5156.
    2. 2)
      • 2. Calais, M., Myrzik, J., Spooner, T., et al: ‘Inverters for single-phase grid connected photovoltaic system – an overview’. Proc. IEEE Power Electronics Specialists Conf., 2002, pp. 19952000.
    3. 3)
      • 3. Patrao, I., Figueres, E., Gonźalez-Espın, F., et al: ‘Transformerless topologies for grid-connected single-phasephotovoltaic inverters’, Renew. Sustain. Energy Rev., 2011, 15, pp. 34233431.
    4. 4)
      • 4. Islam, M., Mekhilef, S.: ‘High efficiency transformerless MOSFET inverter for grid-tied photovoltaic system’. Proc. IEEE 29th Annual Applied Power Electronics Conf. and Exposition, 2014, pp. 33563361.
    5. 5)
      • 5. Araujo, S.V., Zacharias, P., Mallwitz, R.: ‘Highly efficient single-phase transformerless inverters for grid-connected photovoltaic systems’, IEEE Trans. Ind. Electron., 2010, 57, (9), pp. 31183128.
    6. 6)
      • 6. Gubía, E., Sanchis, P., Urśua, A., et al: ‘Ground currents in single-phase transformerless photovoltaic systems’, Prog. Photovolt., Res. Appl., 2007, 15, (7), pp. 629650.
    7. 7)
      • 7. Xiao, H., Liu, X., Lan, K.: ‘Optimised full-bridge transformerless photovoltaic grid-connected inverter with low conduction loss and low leakage current’, IET Power Electron., 2014, 7, (4), pp. 10081015.
    8. 8)
      • 8. Heribert, S., Christoph, S., Jurgen, K.: ‘Inverter for transforming a voltage into an AC current or an AC voltage’. Europe Patent 1 369 985(A2), 13 May 2003.
    9. 9)
      • 9. Kerekes, T., Teodorescu, R., Rodriguez, P., et al: ‘A new high-efficiency single-phase transformerless PV inverter topology’, IEEE Trans. Ind. Electron., 2011, 58, pp. 184191.
    10. 10)
      • 10. Freddy, T.K.S., Rahim, N.A., Hew, W.P., et al: ‘Comparison and analysis of single-phase transformerless grid- connected PV inverters’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 53585369.
    11. 11)
      • 11. Yu, W., Lai, J.-S., Qian, H., et al: ‘High-efficiency MOSFET inverter with H6-type configuration for photovoltaic nonisolated AC-module applications’, IEEE Trans. Power Electron., 2011, 26, (4), pp. 12531260.
    12. 12)
      • 12. Chen, B., Gu, B., Zhang, L., et al: ‘A high efficiency MOSFET transformerless inverter for non-isolated micro-inverter applications’, IEEE Trans. Power Electron., 2015, 30, (7), pp. 36103622.
    13. 13)
      • 13. Islam, M., Mekhilef, S.: ‘Efficient transformerless MOSFET inverter for a grid-tied photovoltaic system’, IEEE Trans. Power Electron., 2016, 31, (9), pp. 63106316.
    14. 14)
      • 14. Victor, M., Greizer, F., Bremicker, S., et al: ‘Method of converting a direct current voltage from a source of direct current voltage, more specifically from a photovoltaic source of direct current voltage, into an alternating current voltage’. US Patent 7411802 B2, 12 August 2008.
    15. 15)
      • 15. Schmidt, H., Siedle, C., Ketterer, J.: ‘DC/AC converter to convert direct electric voltage into alternating voltage or into alternating current’. US Patent 7046534 B2, 16 May 2006.
    16. 16)
      • 16. Ji, B., Wang, J., Zhao, J.: ‘High-efficiency single-phase transformer less PV H6 inverter with hybrid modulation method’, IEEE Trans. Ind. Electron., 2013, 60, (5), pp. 21042115.
    17. 17)
      • 17. Li, W., Gu, Y., Luo, H., et al: ‘Topology review and derivation methodology of single-phase transformerless photovoltaic inverters for leakage current suppression’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 45374551.
    18. 18)
      • 18. Yunjie, G., Wuhua, L., Yi, Z., et al: ‘Transformerless inverter with virtual dc bus concept for cost effective grid connected PV power systems’, IEEE Trans. Power Electron., 2013, 28, (2), pp. 793805.
    19. 19)
      • 19. Islam, M., Mekhilef, S.: ‘An improved transformerless grid connected photovoltaic inverter with reduced leakage current’, Energy Convers. Manage., 2014, 88, pp. 854862.
    20. 20)
      • 20. Huafeng, X., Shaojun, X.: ‘Leakage current analytical model and application in single phase transformerless photovoltaic grid-connected inverter’, IEEE Trans. Electromagnet. Compact., 2010, 52, (4), pp. 902913.
    21. 21)
      • 21. Huafeng, X., Shaojun, X.: ‘Transformerless split-inductor neutral point clamped three-level PV grid-connected inverter’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 17991808.
    22. 22)
      • 22. Barater, D., Buticchi, G., Crinto, A.S., et al: ‘A new proposal for ground leakage current reduction in transformerless grid-connected converters for photovoltaic plants’. 35th Annual Conf. of IEEE Industrial Electronics (IECON ‘09), 2009, pp. 45314536.
    23. 23)
      • 23. Freddy, T.K.S., Rahim, N.A., Hew, W.P., et al: ‘Modulation techniques to reduce leakage current in three-phase transformerless H7 photovoltaic inverter’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 322331.
    24. 24)
      • 24. Wang, Y., Shi, W.W., Xie, N., et al: ‘Diode-free T-type three-level neutral-point-clamped inverter for low-voltage renewable energy system’, IEEE Trans. Ind. Electron., 2014, 61, (11), pp. 61686174.
    25. 25)
      • 25. López, Ó., Freijedo, F.D., Yepes, A.G., et al: ‘Eliminating ground current in a transformerless photovoltaic application’, IEEE Trans. Energy Convers., 2010, 25, (1), pp. 140147.
    26. 26)
      • 26. Zhang, L., Sun, K., Feng, L., et al: ‘A family of neutral point clamped full-bridge topologies for transformerless photovoltaic grid-tied inverters’, IEEE Trans. Power Electron., 2013, 28, (2), pp. 730739.
    27. 27)
      • 27. Freddy, T.K.S., Rahim, N.A.: ‘Photovoltaic inverter topologies for grid integration applications’, in Rabiul Islam, Md., Rahman, Faz, Xu, WeiAdvances in solar photovoltaic power plants’ (Springer Berlin Heidelberg, 2016), pp. 1342.
    28. 28)
      • 28. PSIM User's Guide. Available at

Related content

This is a required field
Please enter a valid email address