© The Institution of Engineering and Technology
Stator flux estimation for electrical machine using voltage model (VM) with a simple structure and the least parameters has been widely researched in highperformance drive systems. Existing lowpass filter (LPF)based estimators either respond slowly or cannot adequately suppress DC drifts, thus, a vector transforming and signal filtering method using VM is proposed for flux estimation. An original flux vector is directly produced through a transformation for motor back electromotive force, and then, the desired flux is obtained through an optimised filter which is designed by combing LPF and bandpass filter with an optimal function. The proposed estimator can both eliminate DC drifts and obtain a fast response and high accuracy, and additionally, its structure is simplified by the decomposing process, which significantly reduces the computation and occupied resources. The effects of cutoff frequencies on dynamical responses and flux harmonics are investigated and the limitations are obtained. This estimator is applicable to extensive strategies, for instance, the implementation of a direct torque controlbased electrical drive system is carried out. Theoretical analysis, simulation, and experiment are conducted to validate the feasibility and effectiveness of the proposed scheme.
References


1)

1. Gdaim, S., Mtibaa, A., Mimouni, M.F.: ‘Design and experimental implementation of induction machine based on fuzzy logic control on FPGA’, IEEE Trans. Fuzzy Syst., 2015, 23, (3), pp. 644–655.

2)

2. Sutikno, T., Idris, N.R.N., Jidin, A., et al: ‘An improved FPGA implementation of direct torque control for induction machines’, IEEE Trans. Ind. Inf., 2013, 9, (3), pp. 1280–1290.

3)

3. Zhao, R.D., Xin, Z., Loh, P.C., et al: ‘A novel flux estimator based on multiple secondorder generalized integrators and frequencylocked loop for induction motor drives’, IEEE Trans. Power Electron., 2017, 32, (8), pp. 6286–6296.

4)

4. Marcetic, D.P., Krcmar, I.R., Gecic, M.A., et al: ‘Discrete rotor flux and speed estimators for highspeed shaftsensorless IM drives’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 3099–3108.

5)

5. Koc, M., Sun, T.F., Wang, J.B.: ‘Performance improvement of direct torque controlled interior mounted permanent magnet drives by employing a linear combination of current and voltage based flux observers’, IET Power Electron., 2016, 9, (10), pp. 2052–2059.

6)

6. Wang, K., Yao, W.X., Lee, K., et al: ‘Regenerating mode stability improvements for combined voltage and current mode flux observer in speed sensorless induction machine control’, IEEE Trans. Ind. Appl., 2014, 50, (4), pp. 2564–2573.

7)

7. Suul, J.A., Luna, A., Rodriguez, P., et al: ‘Voltagesensorless synchronization to unbalanced grids by frequencyadaptive virtual flux estimation’, IEEE Trans. Ind. Electron., 2012, 59, (7), pp. 2910–2923.

8)

8. Li, Y., Huang, W.X., Hu, Y.W.: ‘A low cost implementation of statorfluxoriented induction motor drive’. Proc. 8th Int. Conf. Electrical Machines and Systems, 2005, vol. 2, pp. 1534–1538.

9)

9. Smith, A.N., Gadoue, S.M., Finch, J.W.: ‘Improved rotor flux estimation at low speeds for torque MRASbased sensorless induction motor drives’, IEEE Trans. Energy Convers., 2016, 31, (1), pp. 270–282.

10)

10. Wang, Y., Deng, Z.Q.: ‘Improvement stator flux estimation method for direct torque liner control of parallel hybrid excitation switchedflux generator’, IEEE Trans. Energy Convers., 2012, 27, (3), pp. 747–756.

11)

11. Hu, J., Wu, B.: ‘New integration algorithms for estimating motor flux over a wide speed range’, IEEE Trans. Power Electron., 1998, 13, (5), pp. 969–977.

12)

12. Comanescu, M., Xu, L.Y.: ‘An improved flux observer based on PLL frequency estimator for sensorless vector control of induction motors’, IEEE Trans. Ind. Electron., 2006, 53, (1), pp. 50–56.

13)

13. Patel, C., Ramch, R.J., Sivakumar, K., et al: ‘A rotor flux estimation during zero and active vector periods using current error space vector from a hysteresis controller for a sensorless vector control of IM drive’, IEEE Trans. Ind. Electron., 2011, 58, (6), pp. 2334–2344.

14)

14. Singh, B., Jain, S., Dwivedi, S.: ‘Experimental investigation on flux estimation and control in a direct torque control drive’, Int. J. Adv. Eng. Technol., 2012, 4, (1), pp. 592–599.

15)

15. Luukko, J., Niemela, M., Pyrhonen, J.: ‘Estimation of the flux linkage in a directtorquecontrolled drive’, IEEE Trans. Ind. Electron., 2003, 50, (2), pp. 283–287.

16)

16. Alsofyani, I.M., Idris, N.R.N.: ‘Lookuptablebased DTC of induction machines with improved flux regulation and extended Kalman filter state estimator at lowspeed operation’, IEEE Trans. Ind. Inf., 2016, 12, (4), pp. 1412–1425.

17)

17. Comanescu, M.: ‘Design and implementation of a highly robust sensorless sliding mode observer for the flux magnitude of the induction motor’, IEEE Trans. Energy Convers., 2016, 31, (2), pp. 649–657.

18)

18. Comanescu, M.: ‘Single and double compound manifold sliding mode observers for flux and speed estimation of the induction motor drive’, IET Electr. Power Appl., 2014, 8, (1), pp. 29–38.

19)

19. Proca, A.B., Keyhani, A.: ‘Slidingmode flux observer with online rotor parameter estimation for induction motors’, IEEE Trans. Ind. Electron., 2007, 54, (2), pp. 716–723.

20)

20. Xu, W., Lorenz, R.D.: ‘Highfrequency injectionbased stator flux linkage and torque estimation for DBDTFC implementation on IPMSMs considering crosssaturation effects’, IEEE Trans. Ind. Appl., 2014, 50, (6), pp. 3805–3815.

21)

21. Koc, M., Wang, J.B., Sun, T.F.: ‘An inverter nonlinearityindependent flux observer for direct torquecontrolled highperformance interior permanent magnet brushless AC drives’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 490–502.

22)

22. Liu, K., Zhu, Z.Q.: ‘Mechanical parameter estimation of permanentmagnet synchronous machines with aiding from estimation of rotor PM flux linkage’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 3115–3125.

23)

23. Xu, W., Lorenz, R.D.: ‘Reduced parameter sensitivity stator flux linkage observer in deadbeatdirect torque and flux control for IPMSMs’, IEEE Trans. Ind. Appl., 2014, 50, (4), pp. 2626–2636.

24)

24. Moussa, M.A., Boucherma, M., Khezzar, A.: ‘A detection method for induction motor bar fault using sidelobes leakage phenomenon of the sliding discrete Fourier transform’, IEEE Trans. Power Electron., 2017, 32, (7), pp. 5560–5572.

25)

25. Lyu, X.F., Li, Y.C., Cao, D.: ‘DClink RMS current reduction by increasing paralleled threephase inverter module number for segmented traction drive’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (1), pp. 171–181.

26)

26. Takahashi, I., Noguchi, T.: ‘A new quickresponse and highefficiency control strategy of an induction motor’, IEEE Trans. Ind. Appl., 1986, IA22, (5), pp. 820–827.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietpel.2017.0331
Related content
content/journals/10.1049/ietpel.2017.0331
pub_keyword,iet_inspecKeyword,pub_concept
6
6