access icon free Insulated power supply for gate drivers up to 40 kV for medium-voltage direct current applications

The proposed study is about the design and experimental results of a power supply for gate drivers that can sustain 40 kV of insulation voltage with a parasitic capacitance of 4 pF. The first section focuses on insulation materials suitable for medium voltage capabilities and therefore to justify the use of polyesterimide and Teflon polytetrafluoroethylene materials. In a second step, experimental results are provided to guaranty that with a thickness of 1 mm of the insulation material, an insulation voltage of 40 kV is provided. Then, a DC–DC converter based on a series-series topology is designed and lead to a physical prototype of 5 W. The measured parasitic capacitance is 4 pF between the primary and the secondary sides.

Inspec keywords: DC-DC power convertors; insulating materials; power amplifiers

Other keywords: series-series topology; polyesterimide materials; parasitic capacitance; Teflon polytetrafluoroethylene materials; insulation materials; insulated power supply; insulation voltage; DC–DC converter; medium-voltage direct current applications; insulation material; gate drivers

Subjects: Power electronics, supply and supervisory circuits; DC-DC power convertors

References

    1. 1)
      • 21. Wang, C.-S., Stielau, O.H., Covic, G.A.: ‘Design considerations for a contactless electric vehicle battery charger’, IEEE Trans. Ind. Electron., 2005, 52, (5), pp. 13081314.
    2. 2)
      • 23. Laouamer, R.: ‘Chargeur de batteries à couplage inductif pour véhicule électrique’. PhD thesis, G2Elab, 1998.
    3. 3)
      • 9. Fukuda, K., Okamoto, D., Okamoto, M., et al: ‘Development of ultrahigh-voltage SiC devices’, IEEE Trans. Electron Devices, 2015, 62, (2), pp. 396404.
    4. 4)
      • 22. Huang, Z., Wong, S.-C., Tse, C.K.: ‘Design methodology of a series-series inductive power transfer system for electric vehicle battery charger application’. Early Childhood Care Education 2014, Pittsburgh, PA, USA, September 2014, pp. 17781782.
    5. 5)
      • 6. Christe, A., Dujic, D.: ‘Galvanically isolated modular converter’, IET Power Electron., 2016, 9, (12), pp. 23182328.
    6. 6)
      • 20. Smeets, J.P.C., Krop, D.C.J., Jansen, J.W., et al: ‘Optimal design of a pot core rotating transformer’. Early Childhood Care Education 2010, Atlanta, GA, USA, September 2010, pp. 43904397.
    7. 7)
      • 12. Am, S., Lefranc, P., Frey, D.: ‘Design methodology for optimizing a high insulation voltage IGBT gate driver signal transmission function’, IET Power Electron., 2015, 8, (6), pp. 10351042, doi: 10.1049/iet-pel.2014.0434, print ISSN 1755-4535, online ISSN 1755-4543.
    8. 8)
      • 16. Fukuda, A., Mitsui, H., Inoue, Y., et al: ‘The influence of water absorption on dielectric properties of cycloaliphatic epoxy resin’. IEEE Int. Conf. Properties and Applications of Dielectric Materials (ICPADM), 1997, pp. 5861.
    9. 9)
      • 10. Tang, S.C., Hui, S.Y., Chung, H.S.C.: ‘Coreless printed circuit board (PCB) transformers with multiple secondary windings for complementary gate drive circuits’, IEEE Trans. Power Electron., 1999, 14, (3), pp. 431437.
    10. 10)
      • 5. Steurer, M.M., Schoder, K., Faruque, O., et al: ‘Multifunctional megawatt scale medium voltage dc test bed based on modulated multilevel converter technology’, IEEE Trans. Transp. Electr., 2016, 2, (4), pp. 597606.
    11. 11)
      • 14. Tang, S.C., Hui, S.Y., Chung, H.S.C.: ‘A low-profile low-power converter with coreless PCB isolation transformer’, IEEE Trans. Power Electron., 2001, 16, (3), pp. 311315.
    12. 12)
      • 24. Fairchild, Application Note AN-4151: ‘Half-bridge LLC resonant converter design using FSFR-series fairchild power switch (FPSTM)’. Available at http://www.fairchildsemi.com/, 2007.
    13. 13)
      • 13. Wanderoild, Y., Asfour, A., Lefranc, P., et al: ‘Giant magneto-impedance sensor for gate driver insulated signal transmission functions’, IEEE Trans. Power Electron., Lett., 2017, 32, (4), pp. 24932497.
    14. 14)
      • 15. Am, S., Lefranc, P., Frey, D., et al: ‘Design methodology for very high insulation voltage capabilities power transmission function for IGBT gate drivers based on a virtual prototyping tool’, IET Power Electron., 2017, 10, (5), pp. 545554.
    15. 15)
      • 11. Colin, D., Rouger, N.: ‘High speed optical gate driver for wide band gap power transistors’. IEEE Energy Conversion Congress and Exposition (ECCE), 18–22 September 2016.
    16. 16)
      • 19. Legranger, J., Friedrich, G., Vivier, S., et al: ‘Comparison of two optimal rotary transformer designs for highly constrained applications’. Int. Electric Machines and Drives Conf. 2007, Antalya, Turkey, May 2007, vol. 2, pp. 15461551.
    17. 17)
      • 4. Chen, Y., Zhao, S., Li, Z., et al: ‘Modeling and control of the isolated dc–dc modular multilevel converter for electric ship medium voltage direct current power system’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (1), pp. 124139.
    18. 18)
      • 2. Soltau, N., Kaymak, M., Cui, S., et al: ‘Materials, devices and components for flexible electrical networks of the future’. Int. ETG Congress, 2015.
    19. 19)
      • 1. De Doncker, R.W.: ‘Power electronic technologies for flexible dc distribution grids’. Int. Power Electronics Conf. (IPEC-Hiroshima 2014 – ECCE ASIA), 2014, pp. 736743.
    20. 20)
      • 3. Soman, R., Steurer, M.M., Toshon, T.A., et al: ‘Size and weight computation of MVDC power equipment in architectures developed using the smart ship systems design environment’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (1), pp. 4050.
    21. 21)
      • 18. Am, S.: ‘Power modules design and optimization for medium power of MMC inverters. High insulation voltage gate driver system and 3D packaging’. PhD thesis, G2Elab, 2016. Available at https://hal.archives-ouvertes.fr/tel-01534816v1.
    22. 22)
      • 8. Kadavelugu, A., Mainali, K., Patel, D., et al: ‘Medium voltage power converter design and demonstration using 15 kV SiC N-IGBTs’. IEEE Applied Power Electronics Conf. and Exposition (APEC), 2015, pp. 13961403.
    23. 23)
      • 7. Kadavelugu, A., Bhattacharya, S., Ryu, S.-H., et al: ‘Understanding dv/dt of 15 kV SiC N-IGBT and its control using active gate driver’. IEEE Energy Conversion Congress and Exposition (ECCE), 2014, pp. 22132220.
    24. 24)
      • 17. Nagao, M., Oda, K., Nishioka, K., et al: ‘Effect of moisture on treeing phenomena in epoxy resin with filler under AC voltage’. IEEE Int. Conf. Electrical Insulation Dielectric Phenomenon (CEIDP), 2002, pp. 951954.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0321
Loading

Related content

content/journals/10.1049/iet-pel.2017.0321
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading