Junction temperature estimation of IGBT module via a bond wires lift-off independent parameter V gE-np

Junction temperature estimation of IGBT module via a bond wires lift-off independent parameter V gE-np

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An electrical method for junction temperature estimation of insulated-gate bipolar transistors (IGBTs) is presented in this study. Owing to the parasitic inductance between bond wire and main emitter terminal L E. The temperature-dependent falling collector current during turn-off transition would cause a negative voltage drop in the gate-main emitter voltage waveform v gE. Therefore, this negative voltage drop V gE-np is proportional to the junction temperature. A double-pulse test circuit is developed to verify the accuracy and feasibility of the proposed method. The impacts of collector–emitter voltage V ce, collector current I c and bond-wires cut-off are also be discussed theoretically and experimentally. The experimental results show that the proposed V gE-np has a linear relationship with junction temperature as theoretical analysis and it is a bond-wires cut-off independent parameter in some special test point, which offers an effective way to estimate junction temperature without package destruction. The advantages of the proposed method include good linearity, bond-wires failure immunity and adequate sensitivity with junction temperature.


    1. 1)
      • 1. Yang, S., Bryant, A., Mawby, P., et al: ‘An industry-based survey of reliability in power electronic converters’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 14411451.
    2. 2)
      • 2. Fabis, P.M., Shum, D., Windischmann, H.: ‘Thermal modeling of diamond-based power electronics package’. Proc. 15th Annual IEEE Semiconductor Thermal, San Diego, CA, USA, March 1999, pp. 98104.
    3. 3)
      • 3. Zhou, L., wu, J., Sun, P., et al: ‘Junction temperature management of IGBT module in power electronic converters’, Microelectron. Reliab., 2014, 54, (12), pp. 27882798.
    4. 4)
      • 4. Lixiang, W., McGuire, J., Lukaszewski, R.A.: ‘Analysis of PWM frequency control to improve the lifetime of PWM inverter’, IEEE Trans. Ind. Appl., 2011, 47, (2), pp. 922929.
    5. 5)
      • 5. Musallam, M., Johnson, C.M.: ‘Real-time compact thermal models for health management of power electronics’, IEEE Trans. Power Electron., 2010, 25, (6), pp. 14161425.
    6. 6)
      • 6. Alavi, O., Abdollah, M., Viki, A.H.: ‘Assessment of thermal network models for estimating IGBT junction temperature of a buck converter’. Proc. 2017 Eighth Power Electronics, Drive Systems & Technologies Conf. (PEDSTC), Mashhad, Iran, 2017, pp. 102107.
    7. 7)
      • 7. Wang, Z., Qiao, W.: ‘An online frequency-domain junction temperature estimation method for IGBT modules’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 46334637.
    8. 8)
      • 8. Bruckner, T., Bernet, S.: ‘Estimation and measurement of junction temperatures in a three-level voltage source converter’, IEEE Trans. Power Electron., 2007, 22, (1), pp. 312.
    9. 9)
      • 9. Wang, Z., Qiao, W.: ‘A physics-based improved Cauer-type thermal equivalent circuit for IGBT modules’, IEEE Trans. Power Electron., 2016, 31, (10), pp. 67816786.
    10. 10)
      • 10. Eleffendi, M.A., Johnson, M.: ‘Application of Kalman filter to estimate junction temperature in IGBT power modules’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 15761587.
    11. 11)
      • 11. Choi, U.M., Blaabjerg, F., Jorgensen, S.: ‘Junction temperature estimation for an advanced active power cycling test’. Proc. Ninth Int. Conf. Power Electronics, Seoul, South Korea, 2015, pp. 29442950.
    12. 12)
      • 12. Pramod, G., Bonderup, P.K., Ruiz de, V.A., et al: ‘A real time measurement of junction temperature variation in high power IGBT modules for wind power converter application’. Proc. Integrated Power Systems (CIPS), Nuremberg, Germany, 2014, pp. 16.
    13. 13)
      • 13. Xu, Z., Xu, F., Wang, F.: ‘Junction temperature measurement of IGBTs using short-circuit current as a temperature-sensitive electrical parameter for converter prototype evaluation’, IEEE Trans. Ind. Appl., 2015, 62, (6), pp. 34193429.
    14. 14)
      • 14. Chen, H., Pickert, V., Atkinson, D.J.: ‘On-line monitoring of the MOSFET device junction temperature by computation of the threshold voltage’. Proc. Third IET Int. Conf. Power Electronics, Machines and Drives, Dublin, Ireland, 2006, pp. 440444.
    15. 15)
      • 15. Avenas, Y., Dupont, L., Khatir, Z.: ‘Temperature measurement of power semiconductor devices by thermo-sensitive electrical parameters – a review’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 30813092.
    16. 16)
      • 16. Luo, H., Chen, Y., Sun, P., et al: ‘Junction temperature extraction approach with turn-off delay time for high-voltage high-power IGBT modules’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 51225132.
    17. 17)
      • 17. Zhang, Z., Wang, F., Costinett, D.J., et al: ‘Online junction temperature monitoring using turn-off delay time for silicon carbide power devices’. Proc. Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 2016, pp. 17.
    18. 18)
      • 18. Niu, H., Lorenz, R.D.: ‘Sensing IGBT junction temperature using gate drive output transient properties’. Proc. Applied Power Electronics Conf. Exposition (APEC), Charlotte, NC, 2015, pp. 24922499.
    19. 19)
      • 19. Baker, N., Nielsen, S.M., Iannuzzo, F., et al: ‘IGBT junction temperature measurement via peak gate current’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 34843793.
    20. 20)
      • 20. Niu, H., Lorenz, R.D.: ‘Sensing power MOSFET junction temperature using gate drive turn-on current transient properties’. Proc. Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, 2014, pp. 29092916.
    21. 21)
      • 21. Sundaramoorthy, V.K., Bianda, E., Bloch, R., et al: ‘Simulations online estimation of junction temperature and current of IGBTs using emitter-auxiliary emitter parasitic inductance’. Proc. PCIM 2014 European Conf. Applications., Nuremberg, Germany, 2014, pp. 690697.
    22. 22)
      • 22. Sundaramoorthy, V., Bianda, E., Bloch, R., et al: ‘Online estimation of IGBT junction temperature (TJ) using gate-emitter voltage (Vge) at turn-off’. Proc. 15th European Conf. Power Electronics Applications, Lille, France, 2013, pp. 110.
    23. 23)
      • 23. Barlini, D., Ciappa, M., Castellazzi, A., et al: ‘New technique for the measurement of the static and of the transient junction temperature in IGBT devices under operating conditions’, Microelectron. Reliab., 2006, 46, (9–11), pp. 17721777.
    24. 24)
      • 24. Baliga, B.J.: ‘Fundamentals of power semiconductor devices’ (Springer Publishing, USA, 2008).
    25. 25)
      • 25. Rodriguez-Blanco, M.A., Claudio-Sanchez, A., Theilliol, D.: ‘A failure-detection strategy for IGBT based on gate-voltage behavior applied to a motor drive system’, IEEE Trans. Ind. Electron., 2011, 58, (5), pp. 16251633.
    26. 26)
      • 26. Vinod, K.: ‘Insulated gate bipolar transistor IGBT theory and design’ (Wiley-IEEE, NJ, 2003).

Related content

This is a required field
Please enter a valid email address