Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Study on the design and switching dynamics of hysteresis current controlled four-leg voltage source inverter for load compensation

In a variable switching frequency control scheme, it is challenging to design the voltage source inverter (VSI) parameters without knowing the maximum and minimum switching frequencies. The switching frequency variation depends on the system parameters. Therefore, the expression for frequency variation in one inverter topology does not hold in other topologies. The design of hysteresis current controlled four-leg shunt active power filter (APF) requires the switching dynamics analysis to ensure satisfactory performance of the inverter. In this study, a detailed analysis on the switching dynamics of hysteresis current controlled four-leg VSI and design of various inverter components for compensating unbalanced and non-linear loads are presented. The results obtained from these analyses can be used in any applications involving hysteresis current controlled four-leg VSI. These results are supported by detailed simulation studies conducted on a three-phase four-leg shunt APF system using Matlab/Simulink. The theoretical studies and design of passive components are also verified by conducting experiments on a prototype of four-leg shunt APF developed in the laboratory.

References

    1. 1)
      • 25. Gupta, R.: ‘Generalized frequency domain formulation of the switching frequency for hysteresis current controlled vsi used for load compensation’, IEEE Trans. Power Electron., 2012, 27, (5), pp. 25262535.
    2. 2)
      • 24. Mishra, M.K., Karthikeyan, K.: ‘An investigation on design and switching dynamics of a voltage source inverter to compensate unbalanced and nonlinear loads’, IEEE Trans. Ind. Electron., 2009, 56, (8), pp. 28022810.
    3. 3)
      • 14. George, V., Mishra, M.K.: ‘Design and analysis of user-defined constant switching frequency current-control-based four-leg dstatcom’, IEEE Trans. Power Electron., 2009, 24, (9), pp. 21482158.
    4. 4)
      • 8. Luo, F., Loo, K.H., Lai, Y.M.: ‘Simple carrier-based pulse-width modulation scheme for three-phase four-wire neutral-point-clamped inverters with neutral-point balancing’, IET Power Electron., 2016, 9, (2), pp. 365376.
    5. 5)
      • 6. Neyshabouri, Y., Iman-Eini, H., Miranbeigi, M.: ‘State feedback control strategy and voltage balancing scheme for a transformer-less static synchronous compensator based on cascaded h-bridge converter’, IET Power Electron., 2015, 8, (6), pp. 906917.
    6. 6)
      • 17. He, J., Li, Y.W., Xu, D., et al: ‘Deadbeat weighted average current control with corrective feed-forward compensation for microgrid converters with nonstandard lcl filter’, IEEE Trans. Power Electron., 2017, 32, (4), pp. 26612674.
    7. 7)
      • 21. Fereidouni, A., Masoum, M.A.S., Smedley, K.M.: ‘Supervisory nearly constant frequency hysteresis current control for active power filter applications in stationary reference frame’, IEEE Power Energy Technol. Syst. J., 2016, 3, (1), pp. 112.
    8. 8)
      • 30. Bazzi, A.M., Krein, P.T., Kimball, J.W., et al: ‘Igbt and diode loss estimation under hysteresis switching’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 10441048.
    9. 9)
      • 23. Albanna, A.Z., Hatziadoniu, C.J.: ‘Harmonic modeling of hysteresis inverters in frequency domain’, IEEE Trans. Power Electron., 2010, 25, (5), pp. 11101114.
    10. 10)
      • 5. Xiao, Z., Deng, X., Yuan, R., et al: ‘Shunt active power filter with enhanced dynamic performance using novel control strategy’, IET Power Electronics, 2014, 7, (12), pp. 31693181.
    11. 11)
      • 26. Srikanthan, S., Mishra, M.K.: ‘Modeling of a four-leg inverter based dstatcom for load compensation’. 2010 Int. Conf. Power System Technology, October 2010, pp. 16.
    12. 12)
      • 4. Khadem, S.K.: ‘Harmonic power compensation capacity of shunt active power filter and its relationship with design parameters’, IET Power Electron., 2014, 7, (12), pp. 418430.
    13. 13)
      • 28. Karanki, S.B., Geddada, N., Mishra, M.K., et al: ‘A dstatcom topology with reduced dc-link voltage rating for load compensation with nonstiff source’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 12011211.
    14. 14)
      • 15. Khadkikar, V., Chandra, A., Singh, B.: ‘Digital signal processor implementation and performance evaluation of split capacitor, four-leg and three h-bridge-based three-phase four-wire shunt active filters’, IET Power Electron., 2011, 4, (4), pp. 463470.
    15. 15)
      • 7. Lee, C.T., Wang, B.S., Chen, S.W., et al: ‘Average power balancing control of a statcom based on the cascaded h-bridge pwm converter with star configuration’, IEEE Trans. Ind. Appl., 2014, 50, (6), pp. 38933901.
    16. 16)
      • 31. Tummuru, N.R., Mishra, M.K., Srinivas, S.: ‘Multifunctional vsc controlled microgrid using instantaneous symmetrical components theory’, IEEE Trans. Sustain. Energy, 2014, 5, (1), pp. 313322.
    17. 17)
      • 18. Wu, F., Li, X., Duan, J.: ‘Improved elimination scheme of current zero-crossing distortion in unipolar hysteresis current controlled grid-connected inverter’, IEEE Trans. Ind. Inf., 2015, 11, (5), pp. 11111118.
    18. 18)
      • 11. Sharifzadeh, M., Vahedi, H., Sheikholeslami, A., et al: ‘Hybrid shm-she modulation technique for a four-leg npc inverter with dc capacitor self-voltage balancing’, IEEE Trans. Ind. Electron., 2015, 62, (8), pp. 48904899.
    19. 19)
      • 22. Buso, S., Malesani, L., Mattavelli, P.: ‘Comparison of current control techniques for active filter applications’, IEEE Trans. Ind. Electron., 1998, 45, (5), pp. 722729.
    20. 20)
      • 12. Dong, G., Ojo, O.: ‘Current regulation in four-leg voltage-source converters’, IEEE Trans. Ind. Electron., 2007, 54, (4), pp. 20952105.
    21. 21)
      • 13. Singh, B., Arya, S.R., Jain, C., et al: ‘Implementation of four-leg distribution static compensator’, IET Gener. Transm. Distrib., 2014, 8, (6), pp. 11271139.
    22. 22)
      • 27. Quinn, C.A., Mohan, N.: ‘Active filtering of harmonic currents in three-phase, four-wire systems with three-phase and single-phase nonlinear loads’. Applied Power Electronics Conf. and Exposition, 1992, APEC ‘92. Conf. Proc. 1992, Seventh Annual, February 1992, pp. 829836.
    23. 23)
      • 1. Antoniewicz, K., Jasinski, M., Kazmierkowski, M.P., et al: ‘Model predictive control for three-level four-leg flying capacitor converter operating as shunt active power filter’, IEEE Trans. Ind. Electron., 2016, 63, (8), pp. 52555262.
    24. 24)
      • 29. Blake, C., Bull, C.: ‘Igbt or mosfet: Choose wisely’, ‘Tech. Rep’, International Rectifier, El Segundo, California, August 2006.
    25. 25)
      • 9. Choi, U.M., Lee, J.S., Lee, K.B.: ‘New modulation strategy to balance the neutral-point voltage for three-level neutral-clamped inverter systems’, IEEE Trans. Energy Convers., 2014, 29, (1), pp. 91100.
    26. 26)
      • 19. Merai, M., Naouar, M.W., Slama-Belkhodja, I., et al: ‘Fpga-based fault-tolerant space vector-hysteresis current control for three-phase grid-connected converter’, IEEE Trans. Ind. Electron., 2016, 63, (11), pp. 70087017.
    27. 27)
      • 2. Kanjiya, P., Khadkikar, V., Zeineldin, H.H.: ‘Optimal control of shunt active power filter to meet ieee std. 519 current harmonic constraints under nonideal supply condition’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 724734.
    28. 28)
      • 16. Kuperman, A.: ‘Proportional-resonant current controllers design based on desired transient performance’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 53415345.
    29. 29)
      • 20. Lam, C.S., Wong, M.C., Han, Y.D.: ‘Hysteresis current control of hybrid active power filters’, IET Power Electron., 2012, 5, (7), pp. 11751187.
    30. 30)
      • 3. Wang, L., Lam, C.S., Wong, M.C., et al: ‘Non-linear adaptive hysteresis band pulse-width modulation control for hybrid active power filters to reduce switching loss’, IET Power Electron., 2015, 8, (11), pp. 21562167.
    31. 31)
      • 10. Sharifzadeh, M., Sheikholeslami, A., Vahedi, H., et al: ‘Optimised harmonic elimination modulation extended to four-leg neutral-point-clamped inverter’, IET Power Electron., 2016, 9, (3), pp. 441448.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0118
Loading

Related content

content/journals/10.1049/iet-pel.2017.0118
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address