http://iet.metastore.ingenta.com
1887

Discontinuous decoupled SVPWM schemes for a four-level open-end winding induction motor drive with waveform symmetries

Discontinuous decoupled SVPWM schemes for a four-level open-end winding induction motor drive with waveform symmetries

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A four-level open-end winding induction motor drive (OEWIMD) is realised by feeding the open stator windings of a three-phase induction motor from either end with two-level voltage source inverters (VSIs). These VSIs are operated with unequal DC-link voltages, which are in the ratio of 2:1. This circuit configuration has the disadvantage of overcharging the DC-link capacitor of the inverter operated with the lower input voltage. Decoupled space vector pulse-width modulation (DSVPWM) schemes, which were suggested in the previous literature to circumvent this problem, result in higher switching power loss in the dual-inverter topology. It is known that the discontinuous pulse-width modulation (PWM) schemes reduce the switching power loss. However, lack of structural symmetry of the power circuit renders it unwieldy to devise these PWM schemes. This study explores the applicability of discontinuous decoupled SVPWM (DDPWM) techniques for the four-level OEWIMD, without compromising on the waveform symmetries. With the aid of an improvised loss model, it is shown that these PWM schemes achieve the reduction of the overall loss of the four-level OEWIMD compared to the DSVPWM schemes. It has also been observed that one of the proposed DDPWM schemes result in reduced dv⁄dt in the motor phase voltages.

References

    1. 1)
      • 1. Kouro, S., Rodriguez, J., Bin, W., et al: ‘Powering the future of industry: high-power adjustable speed drive topologies’, IEEE Ind. Appl. Mag., 2012, 18, (4), pp. 2639.
    2. 2)
      • 2. Viju Nair, R, Arun Rahul, S, Sudharshan Kaarthik, R., et al: ‘Generation of higher number of voltage levels by stacking inverters of lower multilevel structures with low voltage devices for drives’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 5259.
    3. 3)
      • 3. Gupta, K.K., Ranjan, A., Bhatnagar, P., et al: ‘Multilevel inverter topologies with reduced device count: a review’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 135151.
    4. 4)
      • 4. Lago, J., Heldwein, M.L.: ‘Generalized synchronous optimal pulse width modulation for multilevel inverters’, IEEE Trans. Power Electron., 2017, 32, (8), pp. 62976307.
    5. 5)
      • 5. Ramachandra Sekhar, K., Srinivas, S.: ‘Discontinuous decoupled PWMs for reduced current ripple in a dual two-level inverter fed open-end winding induction motor drive’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 24932502.
    6. 6)
      • 6. Edpuganti, A., Rathore, A.K.: ‘New optimal pulsewidth modulation for single DC-link dual-inverter fed open-end stator winding induction motor drive’, IEEE Trans. Power Electron., 2015, 30, (8), pp. 43864393.
    7. 7)
      • 7. Darijevic, M., Jones, M., Dordevic, O., et al: ‘Decoupled PWM control of a dual-inverter four-level five-phase drive’, IEEE Trans. Power Electron., 2017, 32, (5), pp. 37193730.
    8. 8)
      • 8. Baiju, M.R., Mohapatra, K.K., Kanchan, R.S., et al: ‘A dual two-level inverter scheme with common mode voltage elimination for an induction motor drive’, IEEE Trans. Power Electron., 2004, 19, (3), pp. 794805.
    9. 9)
      • 9. Subotic, I., Bodo, N., Levi, E., et al: ‘On-board integrated battery charger for EVs using an asymmetrical nine-phase machine’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 32853295.
    10. 10)
      • 10. Dehghani kiadehi, A., Drissi, K.E.K., Pasquier, C.: ‘Angular modulation of dual-inverter fed open-end motor for electrical vehicle applications’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 29802990.
    11. 11)
      • 11. Bojoi, R., Cavagnino, A., Tenconi, A., et al: ‘Control of shaft-line-embedded multiphase starter/generator for aero-engine’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 641652.
    12. 12)
      • 12. Sun, C., Ai, S., Hu, L., et al: ‘The development of a 20MW PWM driver for advanced fifteen-phase propulsion induction motors’, J. Power Electron., 2015, 15, (1), pp. 146159.
    13. 13)
      • 13. An, Q., Liu, J., Peng, Z., et al: ‘Dual-space vector control of open-end winding permanent magnet synchronous motor drive fed by dual inverter’, IEEE Trans. Power Electron., 2016, 31, (12), pp. 83298342.
    14. 14)
      • 14. Ewanchuk, J., Salmon, J., Chapelsky, C.: ‘A method for supply voltage boosting in an open-ended induction machine using a dual inverter system with a floating capacitor bridge’, IEEE Trans. Power Electron., 2013, 28, (3), pp. 13481357.
    15. 15)
      • 15. Somasekhar, V.T., Gopakumar, K., Shivakumar, E.G., et al: ‘A multilevelvoltage space phasor generation for an open-end winding induction motor drive using a dual inverter scheme with asymmetrical DC-link voltages’, Eur. J. Power Electron. Drives, 2002, 12, (3), pp. 2129.
    16. 16)
      • 16. Venugopal Reddy, B., Somasekhar, V.T., Kalyan, Y.: ‘Decoupled space-vector PWM strategies for a four-level asymmetrical open-end winding induction motor drive with waveform symmetries’, IEEE Trans. Ind. Electron., 2011, 58, (11), pp. 51305141.
    17. 17)
      • 17. Shiny, G., Baiju, M.R.: ‘Fractal-based low computation space phasor generation scheme for a four-level inverter using an open-end winding induction motor’, IET Electr. Power Appl., 2012, 6, (9), pp. 652660.
    18. 18)
      • 18. Narayanan, G., Ranganathan, V.T.: ‘Synchronized PWM strategies based on space vector approach. Part 1: Principles of waveform generation’, Proc. Inst. Elect. Eng.-Elect. Power Appl., 1999, 146, (3), pp. 267275.
    19. 19)
      • 19. Somasekhar, V.T., Venugopal Reddy, B., Sivakumar, K.: ‘A four level inversion scheme for a 6n-pole open end winding induction motor drive for an improved DC-link utilization’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 45654572.
    20. 20)
      • 20. Venugopal Reddy, B., Somasekhar, V.T.: ‘An SVPWM scheme for the suppression of zero sequence current in a four-level open-end winding induction motor drive with nested rectifier-inverter’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 28032812.
    21. 21)
      • 21. Chung, D.W., Kim, J.S., Sul, S.K.: ‘Unified voltage modulation technique for real-time three-phase power conversion’, IEEE Trans. Ind. Appl., 1998, 34, (2), pp. 374380.
    22. 22)
      • 22. Mohan, N., Undeland, T.M., Robbins, W.P.: ‘Power electronics: converters, applications, and design’ (Wiley Press, New York, 2002, 3rd edn., 2003 ).
    23. 23)
      • 23. Srinivasan, P., Narasimharaju, B.L., Srikanth, N.V.: ‘Space-vector pulse width modulation scheme for open-end winding induction motor drive configuration’, IET Power Electron., 2015, 8, (7), pp. 10831094.
    24. 24)
      • 24. Lakhimsetty, S., Surulivel, N., Somasekhar, V.T.: ‘Improvised SVPWM strategies for an enhanced performance for a four-level open-end winding induction motor drive’, IEEE Trans. Ind. Electron., 2017, 64, (4), pp. 27502759.
    25. 25)
      • 25. Jacob, B., Baiju, M.R.: ‘A new space vector modulation scheme for multilevel inverters which directly vector quantize the reference space vector’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 8895.
    26. 26)
      • 26. Wu, B.: ‘High-power converters and AC drives’ (IEEE Press/Wiley Interscience, New York, 2006, 1st edn.).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0096
Loading

Related content

content/journals/10.1049/iet-pel.2017.0096
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address