http://iet.metastore.ingenta.com
1887

Fault tolerant three-level boost inverter with reduced source and LC count

Fault tolerant three-level boost inverter with reduced source and LC count

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Presently single stage boost multilevel inverters are becoming more popular for power conversion in renewable energy systems, AC–DC hybrid microgrids etc. Usually in these boost inverter the voltage stress across the inverter leg switches as well as current through these switches are quite higher as compared to load ratings which increases the chances of inverter leg switch failure. In this paper a three level voltage source boost inverter is proposed to achieve rated three level AC output voltage in a single power conversion stage. It retains all the advantages of three level quasi Z- Source inverter by using less number of passive components in the intermediate network between DC source and inverter leg. Beside the inherent shoot through fault tolerant feature the proposed inverter is capable to operate in open circuit failure to give rated balanced AC voltage at load. The above advantages of the proposed single stage inverter make it suitable for low and medium power renewable energy applications where size, weight are main constraint and some of the critical loads are connected to the system. The proposed inverter is verified by simulation (in MATLAB Simulink) and experiment with the help of a laboratory prototype.

References

    1. 1)
      • 1. Bialasiewicz, J.T.: ‘Renewable energy systems with photovoltaic power generators: operation and modeling’, IEEE Trans. Ind. Electron., 2008, 55, (7), pp. 27522758.
    2. 2)
      • 2. Suntio, T.: ‘Editorial special issue on power electronics in photovoltaic applications, 2013’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 26472648.
    3. 3)
      • 3. Elserougi, A.A., Diab, M.S., Massoud, A.M., et al: ‘A switched PV approach for extracted maximum power enhancement of PV arrays during partial shading’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 767772.
    4. 4)
      • 4. Rashid, M.H.: ‘Power electronics’ (Prentice-Hall, Englewood Cliffs, NJ, 1993, 2nd edn.).
    5. 5)
      • 5. Loh, P.C., Li, D., Chai, Y.K., et al: ‘Autonomous control of interlinking converter with energy storage in hybrid AC–DC microgrid’, IEEE Trans. Ind. Appl., 2013, 49, (3), pp. 13741382.
    6. 6)
      • 6. Liu, X., Wang, P., Loh, P.C.: ‘A hybrid AC/DC microgrid and its coordination control’, IEEE Trans. Smart Grid, 2011, 2, (2), pp. 278286.
    7. 7)
      • 7. Husev, O., Blaabjerg, F., Roncero-Clemente, C., et al: ‘Comparison of impedance-source networks for two and multilevel buck–boost inverter applications’, IEEE Trans. Power Electron., 2016, 31, (11), pp. 75647579.
    8. 8)
      • 8. Siwakoti, Y.P., Peng, F.Z., Blaabjerg, F., et al: ‘Impedance-source networks for electric power conversion part I: a topological review’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 699716.
    9. 9)
      • 9. Meneses, D., Blaabjerg, F., García, Ó., et al: ‘Review and comparison of step-up transformerless topologies for photovoltaic AC-module application’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 26492663.
    10. 10)
      • 10. Aleem, Z., Shin, D., Cha, H., et al: ‘Parallel operation of inverter using trans-Z-source network’, IET Power Electron., 2015, 8, (11), pp. 21762183.
    11. 11)
      • 11. Peng, F.Z.: ‘Z-source inverter’, IEEE Trans. Ind. Appl., 2003, 39, (2), pp. 504510.
    12. 12)
      • 12. Ellabban, O., Abu-Rub, H.: ‘Z-Source inverter: topology improvements review’, IEEE Ind. Electron. Mag., 2016, 10, (1), pp. 624.
    13. 13)
      • 13. Dong, S., Zhang, Q., Cheng, S.: ‘Analysis and design of snubber circuit for Z-source inverter applications’, IET Power Electron., 2016, 9, (5), pp. 10831091.
    14. 14)
      • 14. Battiston, A., Miliani, E.H., Pierfederici, S., et al: ‘Efficiency improvement of a quasi-Z-source inverter-fed permanent-magnet synchronous machine-based electric vehicle’, IEEE Trans. Transp. Electrific., 2016, 2, (1), pp. 1423.
    15. 15)
      • 15. Mukherjee, N., Strickland, D.: ‘Analysis and comparative study of different converter modes in modular second-Life hybrid battery energy storage systems’, IEEE J. Emerging Sel. Top. Power Electron., 2016, 4, (2), pp. 547563.
    16. 16)
      • 16. Anderson, J., Peng, F.Z.: ‘Four quasi-Z-Source inverters’. 2008 IEEE Power Electronics Specialists Conf., Rhodes, 2008, pp. 27432749.
    17. 17)
      • 17. Liu, Y., Ge, B., Abu-Rub, H., et al: ‘Modelling and controller design of quasi-Z-source inverter with battery-based photovoltaic power system’, IET Power Electron., 2014, 7, (7), pp. 16651674.
    18. 18)
      • 18. Liu, Y., Ge, B., Abu-Rub, H., et al: ‘Comprehensive modelling of single-phase quasi-Z-source photovoltaic inverter to investigate low-frequency voltage and current ripple’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 41944202.
    19. 19)
      • 19. Panfilov, D., Husev, O., Blaabjerg, F., et al: ‘Comparison of three-phase three-level voltage source inverter with intermediate DC–DC boost converter and quasi-Z-source inverter’, IET Power Electron., 2016, 9, (6), pp. 12381248.
    20. 20)
      • 20. Sun, D., Ge, B., Liang, W., et al: ‘An energy stored quasi-Z-source cascade multilevel inverter-based photovoltaic power generation system’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 54585467.
    21. 21)
      • 21. Husev, O., Roncero-Clemente, C., Romero-Cadaval, E., et al: ‘Single phase three-level neutral-point-clamped quasi-Z source inverter’, IET Power Electron., 2015, 8, (1), pp. 110.
    22. 22)
      • 22. Ravindranath, A., Mishra, S.K., Joshi, A.: ‘Analysis and PWM control of switched boost inverter’, IEEE Trans. Ind. Electron., 2013, 60, (12), pp. 55935602.
    23. 23)
      • 23. Nag, S.S., Mishra, S., Joshi, A.: ‘A passive filter building block for input or output current ripple cancellation in a power converter’, IEEE J. Emerging Sel. Top. Power Electron., 2016, 4, (2), pp. 564575.
    24. 24)
      • 24. Mirafzal, B.: ‘Survey of fault-tolerance techniques for three-phase voltage source inverters’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 51925202.
    25. 25)
      • 25. Wu, F., Zhao, J., Liu, Y.: ‘Symmetry-analysis-based diagnosis method with correlation coefficients for open-circuit fault in inverter’, Electron. Lett., 2015, 51, (21), pp. 16881690.
    26. 26)
      • 26. Estima, J.O., Marques Cardoso, A.J.: ‘A new approach for real-time multiple open-circuit fault diagnosis in voltage-source inverters’, IEEE Trans. Ind. Appl., 2011, 47, (6), pp. 24872494.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0085
Loading

Related content

content/journals/10.1049/iet-pel.2017.0085
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address