access icon free Closed-loop control of the grid-connected Z-source inverter using hyper-plane MIMO sliding mode

In this study, a hyper-plane multi-input–multi-output (MIMO) sliding-mode controller (SMC) is presented for control of the grid-connected Z-source inverter (ZSI). The presented controller can simultaneously control all of the system state variables including grid-side AC current and DC-link capacitors voltage. These state variables are directly regulated by amplitude modulation index and shoot-through interval. The non-minimum phase problem of the capacitors voltage is solved by indirect regulation of the DC-side inductor current. The proposed controller is developed using non-linear MIMO model of the converter; hence, it is possible to apply the proposed controller in a wide operating range. Controller coefficients are designed using Jacobian linearisation approach to ensure stability of the system. According to application of the Lyapunov approach, it is proved that the proposed controller is asymptotically stable against changes of the system state variables. Some simulations are presented to verify the effectiveness and stability of the developed controllers by MATLAB/Simulink toolbox. Also, a laboratory prototype is implemented using a digital signal processor TMS320F28335. Experimental results are given for the presented controller in the single-phase ZSI. It is seen that the experimental and simulation results are in good agreement.

Inspec keywords: control system synthesis; phase control; nonlinear control systems; power grids; amplitude modulation; power capacitors; power inductors; power convertors; linearisation techniques; variable structure systems; electric current control; MIMO systems; closed loop systems; voltage control; power system stability; digital signal processing chips; Lyapunov methods

Other keywords: DC-link capacitor voltage; hyperplane MIMO sliding-mode controller; hyperplane multiinput-multioutput SMC; grid-connected Z source inverter; digital signal processor TMS320F28335; DC-side inductor current; Jacobian linearisation approach; shoot-through interval; nonminimum phase problem; single-phase ZSI; closed-loop control; amplitude modulation index; grid-side AC current; stability; MATLAB-Simulink toolbox; Lyapunov approach

Subjects: Nonlinear control systems; Power convertors and power supplies to apparatus; Voltage control; Stability in control theory; Power system control; Control system analysis and synthesis methods; Control of electric power systems; Phase and gain control; Transformers and reactors; Digital signal processing chips; Digital signal processing chips; Current control; Multivariable control systems

References

    1. 1)
      • 12. Salimi, M., Hajbani, V.: ‘Sliding-mode control of the DC–DC flyback converter in discontinuous conduction mode’. Sixth Power Electronics, Drive Systems & Technologies Conf. PEDSTC2015, Tehran, 2015, pp. 1318.
    2. 2)
      • 22. Miret, J., de Vicuna, L.G., Castilla, M., et al: ‘Design of an analog quasi-steady-state nonlinear current-mode controller for single-phase active power filter’, IEEE Trans. Ind. Electron, 2009, 56, (12), pp. 48724881.
    3. 3)
      • 15. Husev, O., Chub, A., Romero-Cadaval, E., et al: ‘Hysteresis current control with distributed shoot-through states for impedance source inverter’, Int. J. Circuit Theory, 2016, 44, pp. 783797.
    4. 4)
      • 20. Salimi, M., Soltani, J., Zakipour, A., et al: ‘Hyper-plane sliding mode control of the DC–DC buck/boost converter in continuous and discontinuous conduction modes of operation’, IET Power Electron., 2015, 8, (8), pp. 14731482.
    5. 5)
      • 8. Tajima, G., Kosaka, T., Matsui, N., et al: ‘Control of wound field synchronous motor integrated with ZSI’. Int. Power Electronics Conf., 2014, pp. 24382444.
    6. 6)
      • 6. Hanif, M., Basu, M., Gaughan, K.: ‘Understanding the operation of a Z-source inverter for photovoltaic application with a design example’, IET Power Electron., 2009, 4, (3), pp. 278287.
    7. 7)
      • 5. Shahparasti, M., Yazdian, A., Mohamadian, M., et al: ‘Parallel uninterruptible power supplies based on Z-source inverters’, IET Power Electron., 2011, 5, (8), pp. 13591366.
    8. 8)
      • 7. Rajaei, A.H., Mohamadian, M., Dehghan, S.M., et al: ‘Single-phase induction motor drive system using z-source inverter’, IET Electr. Power Appl., 2008, 4, (1), pp. 1725.
    9. 9)
      • 16. Sun, D., Ge, B., Bi, D., Peng, F.Z., et al: ‘Analysis and control of quasi-Z-source inverter with battery for grid-connected PV system’, Int. J. Electr. Power Energy Syst., 2013, 46, pp. 234240.
    10. 10)
      • 4. Gajanayake, C.J., Vilathgamuwa, D.M., Loh, P.C., et al: ‘Z-Source-inverter-based flexible distributed generation system solution for grid power quality improvement’, IEEE Trans. Energy Convers., 2009, 24, (3), pp. 695704.
    11. 11)
      • 24. Slotine, J.J.E., Li, W.: ‘Applied nonlinear control’ (Prentice-Hall Press, 1991).
    12. 12)
      • 19. Rajaei, A.H., Kaboli, S., Emadi, A.: ‘Sliding-mode control of z-source inverter’. 34th Annual Conf. IEEE Industrial Electronics, 2008, pp. 947952.
    13. 13)
      • 3. Guo, F., Fu, L., Lin, C. H., et al: ‘Development of an 85 kW bidirectional quasi-Z-source inverter with DC-link feed-forward compensation for electric vehicle applications’, IEEE Trans. Power Electron., 2013, 28, (12), pp. 54775488.
    14. 14)
      • 2. Battiston, A., Miliani, E.H., Martin, J. P., et al: ‘A control strategy for electric traction systems using a PM-motor fed by a bidirectional Z-source inverter’, IEEE Trans. Veh. Technol., 2014, 63, (9), pp. 41784191.
    15. 15)
      • 14. Krithiga, S., Gounden, N.A.: ‘An improved power electronic controller with unity power factor for a single-stage grid-tied PV system’, Arab. J. Sci. Eng., 2014, 39, (10), pp. 71737182.
    16. 16)
      • 11. Ellabban, O., Mierlo, J.V., Lataire, P.: ‘Capacitor voltage control techniques of the Z-source inverter: a comparative study’, EPE J., 2011, 21, (4), pp. 1324.
    17. 17)
      • 17. Lee, K.W., Kim, T.: ‘Operating-point insensitive voltage control of the Z-source inverter based on an indirect capacitor current control’, IET Power Electron., 2015, 8, (8), pp. 13581366.
    18. 18)
      • 21. Emadi, A.: ‘Modelling and analysis of multi-converter DC power electronic systems using the generalized state space averaging method’. 27th Annual Conf. IEEE IECON ‘01, 2001, pp. 10011007.
    19. 19)
      • 10. Marei, M.I., Allam, M.A., El-Sattar, A.A.: ‘A simple control scheme for the high performance Z-source inverter’, Electr. Power Compon. Syst., 2014, 42, (14), pp. 16231631.
    20. 20)
      • 13. Al-Durra, A., Fayyad, Y., Muyeen, S. M., et al: ‘Fault ride-through of a grid-connected photovoltaic system with quasi Z source inverter’, Electr. Power Compon. Syst., 2016, 44, (16), pp. 17861800.
    21. 21)
      • 9. Loh, P.C., Blaabjerg, F., Wong, C.P.: ‘Comparative evaluation of pulse width modulation strategies for Z-source neutral-point-clamped inverter’, IEEE Trans. Power Electron., 2007, 22, (3), pp. 10051013.
    22. 22)
      • 23. Komurcugil, H., Ozdemir, S., Sefa, I., et al: ‘Sliding-mode control for single-phase grid-connected LCL-filtered VSI with double-band hysteresis scheme’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 864873.
    23. 23)
      • 1. Peng, F.Z.: ‘Z-source inverter’, IEEE Trans. Ind. Appl., 2003, 39, (2), pp. 504510.
    24. 24)
      • 18. Liu, Y., Ge, B., Abu-Rub, H., et al: ‘Control system design of battery-assisted quasi-Z-source inverter for grid-tie photovoltaic power generation’, IEEE Trans. Sustain. Energy, 2013, 4, (4), pp. 9941001.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0076
Loading

Related content

content/journals/10.1049/iet-pel.2017.0076
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading