access icon free Model following average-current-mode control with 1/∛s compensator for interleaved boost converters with improved dynamic response

This study presents a model following average-current-mode (MFACM) control using a 1/∛s compensator to improve robustness and dynamic response for multiphase boost converters. The proposed 1/∛s compensator can maintain a constant phase boost of about 60° over two decades, which is attractive from the point of view of stability design when phase margin, gain margin, delay margin and modulus margin are taken into consideration. In addition, the MFACM control is shown to elevate perturbation rejection ability of converters by reducing closed-loop output impedance and closed-loop audio susceptibility, relative to traditional average-current-mode control methods with the almost same crossover frequency. Computer simulations and experimental results using a three-phase interleaved boost converter are shown close agreement between modelled estimates and measured values.

Inspec keywords: stability; closed loop systems; electric current control; power convertors

Other keywords: improved dynamic response; phase margin; compensator; closed-loop output impedance reduction; multiphase boost converters; delay margin; MFACM control; closed-loop audio susceptibility reduction; constant phase boost; gain margin; three-phase interleaved boost converter; stability design; perturbation rejection; model following average-current-mode control; modulus margin

Subjects: Stability in control theory; Power convertors and power supplies to apparatus; Current control; Control of electric power systems

References

    1. 1)
      • 19. Garcerá, G., Figueres, E., Mocholi, A.: ‘Novel three-compensator average current mode control of E-DC PWM converters with improved robustness and dynamic response’. Proc. IEEE IECON, 2002, pp. 603608.
    2. 2)
      • 15. Svikovic, V., Oliver, J.A., Alou, P., et al: ‘Synchronous buck converter with output impedance correction circuit’, IEEE Trans. Power Electron., 2013, 28, (7), pp. 34153427.
    3. 3)
      • 18. Garcerá, G., Pascual, M., Figueres, E.: ‘Robust average current-mode control of multimodule parallel DC–DC PWM converter systems with improved dynamic response’, IEEE Trans. Ind. Electron., 2001, 48, (5), pp. 9951005.
    4. 4)
      • 16. Svikovic, V., Oliver, J.A., Alou, P., et al: ‘Multiphase current-controlled buck converter with energy recycling output impedance correction circuit (OICC)’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 52075222.
    5. 5)
      • 12. Yan, Y.Y., Lee, F.C., Mattavelli, P., et al: ‘Small signal analysis of V2 control using equivalent circuit model of current mode controls’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 53445353.
    6. 6)
      • 11. Garcerá, G., Figueres, E., Pascual, M., et al: ‘Robust model following control of parallel buck converters’, IEEE. Trans Aerosp. Electron. Syst., 2004, 40, (3), pp. 983997.
    7. 7)
      • 14. Yan, Y.Y., Lee, F.C., Mattavelli, P., et al: ‘I2 average current mode control for switching converters’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 20272036.
    8. 8)
      • 13. Cheng, L., Ni, J., Qian, Y., et al: ‘On-chip compensated wide output range boost converter with fixed-frequency adaptive off-time control for LED driver application’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 20962107.
    9. 9)
      • 21. Ghosh, A., Banerjee, S., Sarkar, M.K., et al: ‘Design and implementation of type-II and type-III controller for DC–DC switched-mode boost converter by using K-factor approach and optimisation techniques’, IET Power Electron., 2016, 9, (5), pp. 938950.
    10. 10)
      • 3. Thottuvelil, V.J., Verghese, G.C.: ‘Analysis and control design of paralleled DC/DC converters with current sharing’, IEEE Trans. Power Electron., 1998, 13, (4), pp. 635644.
    11. 11)
      • 1. Chiang, H.C., Jen, K.K, You, G.H.: ‘Improved droop control method with precise current sharing and voltage regulation’, IET Power Electron., 2016, 9, (4), pp. 789800.
    12. 12)
      • 4. Huang, Y., Tse, C.K.: ‘Circuit theoretic classification of parallel connected DC/DC converters’, IEEE Trans. Circuit Syst. I, 2007, 54, (5), pp. 10991108.
    13. 13)
      • 8. Ollila, J.: ‘A medium power PV-array simulator with a robust control strategy’. Proc. IEEE Conf. Control Applications, Albany, USA, September 1995, pp. 4045.
    14. 14)
      • 5. Fu, M., Zhang, D.L, Li, T.C.: ‘Design and analysis of a conductance compensator for keeping constant bandwidth and output impedance in average current mode control’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 837848.
    15. 15)
      • 9. Lee, A.T.L., Sin, J.K.O., Chan, P.C.H.: ‘Adaptive high-bandwidth digitally controlled buck converter with improved line and load transient response’, IET Power Electron., 2014, 7, (3), pp. 515526.
    16. 16)
      • 7. Choi, B.: ‘Comparative study on paralleling schemes of converter modules for distributed power applications’, IEEE Trans. Ind. Electron., 1998, 45, (2), pp. 194199.
    17. 17)
      • 20. Figueres, E., Benavent, J.M., Garcerá, G., et al: ‘A control circuit with load-current injection for single-phase power-factor-correction rectifiers’, IEEE Trans. Ind. Electron., 2007, 54, (3), pp. 12721281.
    18. 18)
      • 23. Landau, L.D., Zito, G.: ‘Digital control systems design, identification and implementation’ (Springer Press, Berlin, 2016, 1st edn.).
    19. 19)
      • 6. Qahouq, J.A., Arikatla, V.: ‘Online closed-loop autotuning digital compensator for switching power converters’, IEEE Trans. Ind. Electron., 2013, 60, (5), pp. 17471758.
    20. 20)
      • 10. Zhang, L., Ren, X.Y., Ruan, X.B.: ‘A bandpass filter incorporated into the inductor current feedback path for improving dynamic performance of the front-end DC–DC converter in two-stage inverter’, IEEE Trans. Ind. Electron., 2014, 61, (5), pp. 23162325.
    21. 21)
      • 17. Choi, B., Cho, B.H., Lee, F.C., et al: ‘3-loop control for multimodule converter systems’, IEEE Trans. Power Electron., 1993, 8, (4), pp. 466474.
    22. 22)
      • 2. Moayedi, S., Nasirian, V., Lewis, F.L., et al: ‘Team-oriented load sharing in parallel DC–DC converters’, IEEE Trans. Ind. Appl., 2015, 51, (1), pp. 479490.
    23. 23)
      • 22. Ghosh, A., Banerjee, S.: ‘Design and implementation of type-II compensator in DC-DC switch-mode step-up power supply’. IEEE Third Int. Conf. Computer, Communication, Control and Information Technology, Hooghly, India, February 2015, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0070
Loading

Related content

content/journals/10.1049/iet-pel.2017.0070
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading