http://iet.metastore.ingenta.com
1887

access icon free Analysis of efficiency improvement in wireless power transfer system

Loading full text...

Full text loading...

/deliver/fulltext/iet-pel/11/2/IET-PEL.2017.0029.html;jsessionid=agqrn5eabk1dc.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-pel.2017.0029&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Stielau, O.H., Covic, G.A.: ‘Design of loosely coupled inductive power transfer systems’. Proc. Int. Conf. Power Systems Technology, Perth, WA, Australia, December 2000, pp. 8590.
    2. 2)
      • 2. Wang, C.S., Steilau, O.H., Covic, G.A.: ‘Design considerations for a contactless electric vehicle battery charger’, IEEE Trans. Ind. Electron., 2005, 52, (5), pp. 13081314.
    3. 3)
      • 3. Kurs, A., Karalis, A., Moffatt, R., et al: ‘Wireless power transfer via strongly coupled magnetic resonances’, Science, 2007, 317, pp. 8386.
    4. 4)
      • 4. García, D.T., Vázquez, J., Roncero-Sánchez, P.: ‘Design, implementation issues and performance of an inductive power transfer system for electric vehicle chargers with series–series compensation’, IET Power Electron., 2015, 8, (10), pp. 19201930.
    5. 5)
      • 5. Musavi, F., Eberle, W.: ‘Overview of wireless power transfer technologies for electric vehicle battery charging’, IET Power Electron., 2014, 7, (1), pp. 6066.
    6. 6)
      • 6. Huang, Y., Shinohara, N., Mitani, T.: ‘A constant efficiency of rectifying circuit in an extremely wide load range’, IEEE Trans. Microw. Theory Tech., 2014, 62, (4), pp. 986993.
    7. 7)
      • 7. Zhong, W.X., Hui, S.Y.R.: ‘Maximum energy efficiency tracking for wireless power transfer systems’, IEEE Trans. Power Electron., 2015, 30, (7), pp. 40254034.
    8. 8)
      • 8. Li, H., Li, J., Wang, K., et al: ‘A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling’, IEEE Trans. Power Electron., 2015, 30, (7), pp. 39984008.
    9. 9)
      • 9. Hui, S.Y.R., Zhong, W., Lee, C.K.: ‘A critical review of recent progress in mid-range wireless power transfer’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 45004511.
    10. 10)
      • 10. Lim, Y., Tang, H., Lim, S., et al: ‘An adaptive impedance-matching network based on a novel capacitor matrix for wireless power transfer’, IEEE Trans. Power Electron., 2014, 29, (8), pp. 44034413.
    11. 11)
      • 11. Teck Chuan, B., Kato, M., Imura, T., et al: ‘Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling’, IEEE Trans. Ind. Electron., 2013, 60, (9), pp. 36893698.
    12. 12)
      • 12. Zargham, M., Gulak, P.G.: ‘Maximum achievable efficiency in near-field coupled power-transfer systems’, IEEE Trans. Biomed. Circuits Syst., 2012, 6, (3), pp. 228245.
    13. 13)
      • 13. Zhang, Y., Zhao, Z., Chen, K.: ‘Frequency decrease analysis of resonant wireless power transfer’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 10581063.
    14. 14)
      • 14. Huang, S., Li, Z., Lu, K.: ‘Frequency splitting suppression method for four-coil wireless power transfer system’, IET Power Electron., 2016, 9, (15), pp. 28592864.
    15. 15)
      • 15. Zhong, W., Lee, C.K., Hui, S.R.: ‘General analysis on the use of tesla's resonators in domino forms for wireless power transfer’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 261270.
    16. 16)
      • 16. Zhang, Y., Tang, H., Yao, C., et al: ‘Experiments on adjustable magnetic metamaterials applied in megahertz wireless power transmission’, AIP Adv., 2015, 5, (1), p. 017142.
    17. 17)
      • 17. Minfan, F., He, Y., Xinen, Z., et al: ‘Analysis and tracking of optimal load in wireless power transfer systems’, IEEE Trans. Power Electron., 2015, 30, (7), pp. 39523963.
    18. 18)
      • 18. Ahn, D., Hong, S.: ‘Wireless power transfer resonance coupling amplification by load-modulation switching controller’, IEEE Trans Ind. Electron., 2015, 62, (2), pp. 898909.
    19. 19)
      • 19. Ahn, D., Kim, S., Moon, J., et al: ‘Wireless power transfer with automatic feedback control of load resistance transformation’, IEEE Trans. Power Electron., 2016, 31, (11), pp. 78767886.
    20. 20)
      • 20. Femia, N., Petrone, G., Spagnuolo, G., et al: ‘Optimization of perturb and observe maximum power point tracking method’, IEEE Trans. Power Electron., 2005, 20, (4), pp. 963973.
    21. 21)
      • 21. Nguyen, B.X., Vilathgamuwa, D.M., Foo, G.H.B., et al: ‘An efficiency optimization scheme for bidirectional inductive power transfer systems’, IEEE Trans. Power Electron., 2015, 30, (11), pp. 63106319.
    22. 22)
      • 22. Diekhans, T., De Doncker, R.W.: ‘A dual-side controlled inductive power transfer system optimized for large coupling factor variations and partial load’, IEEE Trans. Power Electron., 2015, 30, (11), pp. 63206328.
    23. 23)
      • 23. Wang, C.S., Covic, G.A., Stielau, O.H.: ‘Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems’, IEEE Trans. Ind. Electron., 2004, 51, (1), pp. 148157.
    24. 24)
      • 24. Boys, J.T., Hu, A.P., Covic, G.A.: ‘Critical Q analysis of a current-fed resonant converter for ICPT applications’, Electron. Lett., 2000, 36, (17), pp. 14401442.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2017.0029
Loading

Related content

content/journals/10.1049/iet-pel.2017.0029
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address