access icon free Design of high-speed gate driver to reduce switching loss and mitigate parasitic effects for SiC MOSFET

The high switching speed in a silicon carbide (SiC) metal–oxide–semiconductor field-effect transistor (MOSFET) will aggravate the parasitic effects (di/dt and dv/dt) arising from the interaction with parasitic elements. In this project, a high-speed gate driver has been developed and optimised for the commercially available SiC MOSFET power module. The impact of various parasitic parameters on parasitic effects is initially evaluated. Then, an improved gate-assisted circuit is proposed with a local low-impedance path for both discharging and Cdv/dt currents. It allows maximised turn-off speed (dv/dt up to 36 V/ns) and minimised turn-off loss (reduction up to 70%). It also produces a reduction in electromagnetic interference. The gate voltage spike due to Cdv/dt current is reduced below the threshold voltage at various testing conditions.

Inspec keywords: MOSFET; interference suppression; driver circuits; wide band gap semiconductors; silicon compounds

Other keywords: parasitic effect mitigation; gate voltage spike reduction; discharging currents; threshold voltage; local low-impedance path; parasitic parameters; electromagnetic interference reduction; metal-oxide-semiconductor field-effect transistor; improved gate-assisted circuit; SiC; minimised turn-off loss; silicon carbide MOSFET power module; switching loss reduction; maximised turn-off speed; high-speed gate driver design

Subjects: Power electronics, supply and supervisory circuits; Insulated gate field effect transistors; Electromagnetic compatibility and interference

References

    1. 1)
      • 8. Wada, K., Ando, M., Hino, A.: ‘Design of DC-side wiring structure for high-speed switching operation using SiC power devices’. Proc. IEEE Applied Power Electronics Conf. Exposition, March 2013, pp. 584590.
    2. 2)
      • 15. ‘Mitigation methods for parasitic turn-on effect due to Miller capacitor’. Avago Technologies Application Note, 2010.
    3. 3)
      • 26. Li, H., Munk-Nielsen, S.: ‘Challenges in switching SiC MOSFET without ringing’. Proc. PCIM Europe, May 2014, pp. 16.
    4. 4)
      • 14. Chen, Z., Boroyevich, D., Burgos, R.: ‘Experimental parametric study of the parasitic inductance influence on MOSFET switching characteristics’. Proc. IEEE Int. Conf. on Power Electronics – ECCE Asia, June 2010, pp. 164169.
    5. 5)
      • 1. Funaki, T., Balda, J.C., Junghans, J., et al: ‘Power conversion with SiC devices at extremely high ambient temperatures’, IEEE Trans. Power Electron., 2007, 22, (4), pp. 13211329.
    6. 6)
      • 3. Trentin, A., Zanchetta, P., Wheeler, P., et al: ‘Performance evaluation of high-voltage 1.2 kV silicon carbide metal oxide semiconductor field effect transistors for three-phase buck-type PWM rectifiers in aircraft applications’, IET Power Electron., 2012, 5, (9), pp. 18731881.
    7. 7)
      • 9. Paredes, A., Sala, V., Ghorbani, H., et al: ‘A novel active gate driver for silicon carbide MOSFET’. Proc. IEEE Industrial Electronics Society Conf., October 2016, pp. 31723177.
    8. 8)
      • 24. Yin, S., Tseng, K.J., Tong, C.F., et al: ‘A novel gate assisted circuit to reduce switching loss and eliminate shoot-through in SiC half bridge configuration’. Proc. IEEE Applied Power Electronics Conf. and Exposition, March 2016, pp. 30583064.
    9. 9)
      • 5. Whitaker, B., Barkley, A., Cole, Z., et al: ‘A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices’, IEEE Trans. Power Electron., 2014, 29, (5), pp. 26062617.
    10. 10)
      • 12. Wang, J., Chung, H.S.-H., Li, R.T.-H.: ‘Characterization and experimental assessment of the effects of parasitic elements on the MOSFET switching performance’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 573590.
    11. 11)
      • 11. Yamaguchi, K., Katsura, K., Yamada, T., et al: ‘Comprehensive evaluation of gate boost driver for SiC-MOSFETs’. Proc. IEEE Energy Conversion Congress and Exposition, September 2016, pp. 18.
    12. 12)
      • 25. Callanan, B.: ‘Application considerations for silicon carbide MOSFETs’. Cree Inc. Application Note, 2011.
    13. 13)
      • 6. Chen, Z., Yao, Y., Boroyevich, D., et al: ‘A 1200 V, 60 A SiC MOSFET multichip phase-leg module for high-temperature, high-frequency applications’, IEEE Trans. Power Electron., 2014, 29, (5), pp. 23072320.
    14. 14)
      • 27. Callanan, B.: ‘SiC MOSFET double pulse fixture’. Cree Inc. Application Note, 2011.
    15. 15)
      • 10. Mo, F., Furuta, J., Kobayashi, K.: ‘A low surge voltage and fast speed gate driver for SiC MOSFET with switched capacitor circuit’. Proc. IEEE Workshop Wide Bandgap Power Devices and Applications, November 2016, pp. 282285.
    16. 16)
      • 13. Xiao, Y., Shah, H., Chow, T., et al: ‘Analytical modeling and experimental evaluation of interconnect parasitic inductance on MOSFET switching characteristics’. Proc. IEEE Applied Power Electronics Conf. and Exposition, 1 February 2004, pp. 516521.
    17. 17)
      • 22. Mohan, N., Undeland, T.M.: ‘Power electronics: converters, applications, and design’ (John Wiley & Sons, 2007).
    18. 18)
      • 20. Yin, S., Tseng, K., Simanjorang, R., et al: ‘Experimental comparison of high-speed gate driver design for 1.2 kV/120 A Si IGBT and SiC MOSFET modules’, IET Power Electron., 2017, pp. 325326.
    19. 19)
      • 2. Mazumder, S., Jedraszczak, P.: ‘Evaluation of a SiC dc/dc converter for plug-in hybrid electric-vehicle at high inlet-coolant temperature’, IET Power Electron., 2011, 4, (6), pp. 708714.
    20. 20)
      • 18. Khanna, R., Amrhein, A., Stanchina, W., et al: ‘An analytical model for evaluating the influence of device parasitics on Cdv/dt induced false turn-on in SiC MOSFETs’. Proc. IEEE Applied Power Electronics Conf. and Exposition, March 2013, pp. 518525.
    21. 21)
      • 23. ‘Wolfspeed SiC half bridge module CAS120M12BM2’. Available at http://www.wolfspeed.com/Power/Products/SiC-Power-Modules/SiC-Modules/CAS120M12BM2, accessed July 2016.
    22. 22)
      • 7. Caponet, M.C., Profumo, F., De Doncker, R.W., et al: ‘Low stray inductance bus bar design and construction for good EMC performance in power electronic circuits’, IEEE Trans. Power Electron., 2002, 17, (2), pp. 225231.
    23. 23)
      • 21. Baliga, B.J.: ‘Power semiconductor devices’ (PWS Publishing Company, 1996).
    24. 24)
      • 19. Khanna, R., Barchowsky, A., Amrhein, A.A., et al: ‘A linear model for characterizing transient behaviour in wide bandgap semiconductor-based switching circuits’, Int. J. Autom. Power Eng., 2016, 5, pp. 116.
    25. 25)
      • 4. Xu, F., Han, T.J., Jiang, D., et al: ‘Development of a SiC JFET-based six-pack power module for a fully integrated inverter’, IEEE Trans. Power Electron., 2013, 28, (3), pp. 14641478.
    26. 26)
      • 16. Zushi, Y., Sato, S., Matsui, K., et al: ‘A novel gate assist circuit for quick and stable driving of SiC-JFETs in a 3-phase inverter’. Proc. IEEE Applied Power Electronics Conf. and Exposition, February 2012, pp. 17341739.
    27. 27)
      • 17. Zhang, Z., Wang, F., Tolbert, L.M., et al: ‘Active gate driver for crosstalk suppression of SiC devices in a phase-leg configuration’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 19861997.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2016.1009
Loading

Related content

content/journals/10.1049/iet-pel.2016.1009
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading