access icon free Single-phase ac–dc–ac topology for grid overvoltage and voltage harmonic mitigation

A single-phase ac–dc–ac topology to improve power quality is proposed in this study. This configuration is obtained from the addition of a floating capacitor H-bridge converter on the grid side of the conventional ac–dc–ac three-leg topology. The role of the structure is not only to ensure regulated load voltage with fixed amplitude and frequency, grid current with low harmonic content and unitary power factor, but also to mitigate fundamental overvoltage and voltage harmonics at the grid. As a consequence, the proposed topology is suitable to operate as unified power quality compensator or uninterrupted power supply. It does not use isolation transformer and is capable of generating multilevel input voltages due to the cascaded H-bridge. The operation with asymmetrical dc-link voltages is considered to increase the number of voltage levels and reduce the harmonic content of the generated input voltages. Two pulse-width modulation techniques and a control system are developed to regulate the dc-link voltages and to decrease the harmonic distortion (HD), lowering the switching stress and also the power losses. The proposed configuration is compared with the conventional one with respect to HD and semiconductor losses. Simulated and experimental results are presented for validation purposes.

Inspec keywords: power supply quality; AC-DC power convertors; uninterruptible power supplies; power factor; DC-AC power convertors

Other keywords: harmonic distortion; uninterrupted power supply; validation purposes; unitary power factor; low harmonic content; fixed frequency; fixed amplitude; unified power quality compensator; cascaded H-bridge; UPS; single-phase ac–dc–ac topology; switching stress; regulated load voltage; three-leg topology; asymmetrical dc-link voltages; power losses; grid overvoltage mitigation; voltage levels; multilevel input voltages; floating capacitor H-bridge converter; voltage harmonic mitigation

Subjects: AC-DC power convertors (rectifiers); DC-AC power convertors (invertors); Power supply quality and harmonics

References

    1. 1)
      • 14. Sousounis, M.C., Shek, J.K.H., Mueller, M.A.: ‘Filter design for cable overvoltage and power loss minimization in a tidal energy system with onshore converters’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 400408.
    2. 2)
      • 11. Rani, R.S., Rao, C.S., Kumar, M.V.: ‘Analysis of active power filter for harmonic mitigation in distribution system’. 2016 Int. Conf. Electrical, Electronics, and Optimization Techniques (ICEEOT), March 2016, pp. 13381446.
    3. 3)
      • 31. Wu, J.-C., Jou, H.-L., Wu, K.-D., et al: ‘Three-arm AC automatic voltage regulator’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 567575.
    4. 4)
      • 22. Busquets-Monge, S., Rocabert, J., Rodriguez, P., et al: ‘Multilevel diode-clamped converter for photovoltaic generators with independent voltage control of each solar array’, IEEE Trans. Ind. Electron., 2008, 55, (7), pp. 27132723.
    5. 5)
      • 17. Rohten, J.A., Espinoza, J.R., Muoz, J.A., et al: ‘Discrete nonlinear control based on a double dq transform of a multi-cell UPQC’. IECON 2011 – 37th Annual Conf. IEEE Industrial Electronics Society, November 2011, pp. 41344139.
    6. 6)
      • 18. Yasmeena, , Das, G.T.R.: ‘A review of UPQC topologies for reduced dc-link voltage with MATLAB simulation models’. 2016 Int. Conf. Emerging Trends in Engineering, Technology and Science (ICETETS), February 2016, pp. 17.
    7. 7)
      • 25. Melo, V.F.M.B., Jacobina, C.B., Rocha, N.: ‘Ac–dc–ac six-phase machine drive system based on single-phase bridge converters’. IECON 2013 – 39th Annual Conf. of the IEEE Industrial Electronics Society, November 2013, pp. 51305135.
    8. 8)
      • 13. Maia, A.C.N., Jacobina, C.B., de Freitas, N.B., et al: ‘Investigation of three-phase ac–dc–ac multilevel nine-leg converter’, IEEE Trans. Ind. Appl., 2016, 52, (5), pp. 41564169.
    9. 9)
      • 20. Park, J.K., Kwon, J.M., Kim, E.H., et al: ‘High-performance transformerless online UPS’, IEEE Trans. Ind. Electron., 2008, 55, (8), pp. 29432953.
    10. 10)
      • 33. Qin, Z., Loh, P.C., Blaabjerg, F.: ‘Modulation schemes with enhanced switch thermal distribution for single-phase ac–dc–ac reduced-switch converters’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 33023313.
    11. 11)
      • 24. Xinghua, T., Lie, X., Yichao, S., et al: ‘A transformerless cascaded ac–dc–ac converter for multiphase propulsion drive application’. 2011 Int. Conf. Electrical Machines and Systems, August 2011, pp. 15.
    12. 12)
      • 3. Bento, A.A.M., da Silva, E.R.C., Praga, P.P.: ‘Integrated one-cycle control for three-leg universal active power filter’. 2008 IEEE Power Electronics Specialists Conf., June 2008, pp. 39743980.
    13. 13)
      • 26. Jacobina, C.B., Rocha, N., de Almeida Carlos, G.A., et al: ‘Flexible series/parallel ac–dc–ac motor drive system’, IEEE Trans. Ind. Appl., 2015, 51, (1), pp. 259270.
    14. 14)
      • 38. Dias, J.A.A., dos Santos, E.C.Jr., Jacobina, C.B., et al: ‘Application of single-phase to three-phase converter motor drive systems with IGBT dual module losses reduction’. Proc. COBEB, 2009, pp. 11551162.
    15. 15)
      • 23. Malinowski, M., Stynski, S., Kolomyjski, W., et al: ‘Control of three-level PWM converter applied to variable-speed-type turbines’, IEEE Trans. Ind. Electron., 2009, 56, (1), pp. 6977.
    16. 16)
      • 35. Hava, A.M., Ayhan, U., Aban, V.V.: ‘A dc bus capacitor design method for various inverter applications’. 2012 IEEE Energy Conversion Congress and Exposition (ECCE), September 2012, pp. 45924599.
    17. 17)
      • 1. Knott, A., Andersen, T.M., Kamby, P., et al: ‘Evolution of very high frequency power supplies’, IEEE J. Emerging Sel. Top. Power Electron., 2014, 2, (3), pp. 386394.
    18. 18)
      • 6. IEEE recommended practice and requirements for harmonic control in electric power systems’, IEEE Std. 519-2014 (Revision of IEEE Std. 519-1992), June 2014, pp. 129.
    19. 19)
      • 29. Lezana, P., Rodriguez, J., Oyarzun, D.A.: ‘Cascaded multilevel inverter with regeneration capability and reduced number of switches’, IEEE Trans. Ind. Electron., 2008, 55, (3), pp. 10591066.
    20. 20)
      • 36. Blaabjerg, F., Neacsu, D.O., Pedersen, J.K.: ‘Adaptive SVM to compensate dc-link voltage ripple for four-switch three-phase voltage-source inverters’, IEEE Trans. Power Electron., 1999, 14, (4), pp. 743752.
    21. 21)
      • 9. Reznik, A., Simes, M.G., Al-Durra, A., et al: ‘LCL filter design and performance analysis for grid-interconnected systems’, IEEE Trans. Ind. Appl., 2014, 50, (2), pp. 12251232.
    22. 22)
      • 7. Sekar, T.C., Rabi, B.J.: ‘A review and study of harmonic mitigation techniques’. 2012 Int. Conf. on Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM), December 2012, pp. 9397.
    23. 23)
      • 19. Choi, J.-H., Kwon, J.-M., Jung, J.-H., et al: ‘High-performance online UPS using three-leg-type converter’, IEEE Trans. Ind. Electron., 2005, 52, (3), pp. 889897.
    24. 24)
      • 2. Wang, F., Zhang, Z., Ericsen, T., et al: ‘Advances in power conversion and drives for shipboard systems’, Proc. IEEE, 2015, 103, (12), pp. 22852311.
    25. 25)
      • 12. Gonzatti, R.B., Ferreira, S.C., da Silva, C.H., et al: ‘Smart impedance: a new way to look at hybrid filters’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 837846.
    26. 26)
      • 28. dos Santos, E.C.Jr., Jacobina, C.B., Dias, J.A.A., et al: ‘Fault tolerant ac–dc–ac single-phase to three-phase converter’, IET Power Electron., 2011, 4, (9), pp. 10231031.
    27. 27)
      • 16. Kolar, J.W., Friedli, T., Rodriguez, J., et al: ‘Review of three-phase PWM ac–ac converter topologies’, IEEE Trans. Ind. Electron., 2011, 58, (11), pp. 49885006.
    28. 28)
      • 15. Qin, Z., Loh, P.C., Blaabjerg, F.: ‘Line-to-line voltage based modulation scheme for single-phase reduced switch ac–dc–ac converters to achieve improved performance’. 2015 Ninth Int. Conf. Power Electronics and ECCE Asia (ICPE-ECCE Asia), June 2015, pp. 13031310.
    29. 29)
      • 34. Maia, A.C.N., Jacobina, C.B.: ‘Single-phase ac–dc–ac multilevel five-leg converter’, IET Power Electron., 2014, 7, (11), pp. 27332742.
    30. 30)
      • 8. Singh, S., Singh, B.: ‘Power quality improvement using optimized passive filter for 12-pulse rectifier-chopper in LCI fed synchronous motor drives’. 2011 World Congress on Information and Communication Technologies, December 2011, pp. 11041111.
    31. 31)
      • 30. Chomat, M., Lipo, T.A.: ‘Adjustable-speed drive with single-phase induction machine for HVAC applications’. 2001 IEEE 32nd Annual Power Electronics Specialists Conf. (IEEE Cat. No. 01CH37230), 2001, vol. 3, pp. 14461451.
    32. 32)
      • 10. Schwanz, D., Bagheri, A., Bollen, M., et al: ‘Active harmonic filters: control techniques review’. 2016 17th Int. Conf. Harmonics and Quality of Power (ICHQP), October 2016, pp. 3641.
    33. 33)
      • 4. Trinh, Q.N., Lee, H.H.: ‘An advanced current control strategy for three-phase shunt active power filters’, IEEE Trans. Ind. Electron., 2013, 60, (12), pp. 54005410.
    34. 34)
      • 37. van der Broeck, H., Skudelny, H.-C., Stanke, G.: ‘Analysis and realization of a pulse width modulator based on voltage space vectors’, IEEE Trans. Ind. Appl., 1988, 24, (1), pp. 142150.
    35. 35)
      • 27. Ma, M., Hu, L., Chen, A., et al: ‘Reconfiguration of carrier-based modulation strategy for fault tolerant multilevel inverters’, IEEE Trans. Power Electron., 2007, 22, (5), pp. 20502060.
    36. 36)
      • 21. de Azpeitia, M.A.P., Fernandez, A., Lamar, D.G., et al: ‘Simplified voltage-sag filler for line-interactive uninterruptible power supplies’, IEEE Trans. Ind. Electron., 2008, 55, (8), pp. 30053011.
    37. 37)
      • 5. Latran, M.B., Teke, A., Yolda, Y.: ‘Mitigation of power quality problems using distribution static synchronous compensator: a comprehensive review’, IET Power Electron., 2015, 8, (7), pp. 13121328.
    38. 38)
      • 32. Jacobina, C.B., Queiroz, A.de P.D., Maia, A.C.N., et al: ‘Ac–dc–ac multilevel converters based on three-leg converters’. 2013 IEEE Energy Conversion Congress and Exposition, September 2013, pp. 53125319.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2016.0934
Loading

Related content

content/journals/10.1049/iet-pel.2016.0934
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading