access icon free Deadbeat control for a single-phase cascaded H-bridge rectifier with voltage balancing modulation

The model predictive control (MPC) is a promising control method for cascaded H-bridge (CHB) rectifiers. One well-known MPC method is the finite-control-set MPC (FCS-MPC). However, three main issues arise in FCS-MPC: heavy computational burden, low steady-state performance, and time-consuming tuning work of weighting factor. Here, an alternative MPC method, deadbeat (DB) control with a capability of voltage balance, has been proposed for a single-phase CHB rectifier. The proposed method is based on the DB solution to obtain zero current error at the sampling instant and the use of a redundancy-based modulation strategy for voltage balance, leading to the ease of controller design and elimination of tuning work. The proposed method has been evaluated against FCS-MPC method on a single-phase three-cell CHB rectifier. The experimental results show that a reduced computational burden, an improved steady-state performance, and a comparable dynamic response can be achieved in the proposed method in comparison with FCS-MPC method.

Inspec keywords: predictive control; rectifiers; control system synthesis; bridge circuits

Other keywords: FCS-MPC method; redundancy-based modulation strategy; zero current error; DB controller design; voltage balancing modulation; deadbeat controller design; single-phase CHB rectifier; finite-control-set model predictive control method; single-phase cascaded H-bridge rectifier

Subjects: Power electronics, supply and supervisory circuits; Optimal control; Control system analysis and synthesis methods

References

    1. 1)
      • 8. She, X., Huang, A.Q., Wang, G.: ‘3-dspace modulation with voltage balancing capability for a cascaded seven-level converter in a solid-state transformer’, IEEE Trans. Power Electron., 2011, 26, (12), pp. 37783789.
    2. 2)
      • 25. Kwak, S., Kim, S.-E., Park, J.-C.: ‘Predictive current control methods with reduced current errors and ripples for single-phase voltage source inverters’, IEEE Trans. Ind. Inf., 2015, 11, (5), pp. 10061016.
    3. 3)
      • 10. Eini H, I.-, Schanen, J.-L., Farhangi, S., et al: ‘A modular strategy for control and voltage balancing of cascaded H-bridge rectifiers’, IEEE Trans. Power Electron., 2008, 23, (5), pp. 24282442.
    4. 4)
      • 7. Yang, D., Wu, N., Ying, L., et al: ‘Natural frame control of single-phase cascaded h-bridge multilevel converter based on fictive-phases construction’, IEEE Trans. Ind. Electron., early access.
    5. 5)
      • 23. Wang, Y., Wang, X., Xie, W., et al: ‘Deadbeat model-predictive torque control with discrete space-vector modulation for PMSM drives’, IEEE Trans. Ind. Electron., 2017, 64, (5), pp. 35373547.
    6. 6)
      • 22. Baidya, R., Aguilera, R.P., Acuna, P., et al: ‘Multistep model predictive control for cascaded H-bridge inverters: formulation and analysis’, IEEE Trans. Power Electron., 2018, 33, (1), pp. 876886.
    7. 7)
      • 5. Shi, J., Gou, W., Yuan, H., et al: ‘Research on voltage and power balance control for cascaded modular solid-state transformer’, IEEE Trans. Power Electron., 2011, 26, (4), pp. 11541166.
    8. 8)
      • 11. Moeini, A., I.-Eini, H., Marzoughi, A.: ‘DC link voltage balancing approach for cascaded H-bridge active rectifier based on selective harmonic elimination-pulse width modulation’, IET Power Electron., 2015, 8, (4), pp. 583590.
    9. 9)
      • 6. Zhao, T., Wang, G., Bhattacharya, S., et al: ‘Voltage and power balance control for a cascaded H-bridge converter-based solid-state transformer’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 15231532.
    10. 10)
      • 21. Perez, M.A., Cortes, P., Rodriguez, J.: ‘Predictive control algorithm technique for multilevel asymmetric cascaded H-bridge inverters’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 43544361.
    11. 11)
      • 15. Zanchetta, P., Gerry, D.B., Monopoli, V.G., et al: ‘Predictive current control for multilevel active rectifiers with reduced switching frequency’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 163172.
    12. 12)
      • 14. Karamanakos, P., Pavlou, K., Manias, S.: ‘An enumeration-based model predictive control strategy for the cascaded h-bridge multilevel rectifier’, IEEE Trans. Ind. Electron., 2014, 61, (7), pp. 34803489.
    13. 13)
      • 2. Aguilera, R.P., Acuna, P., Yu, Y., et al: ‘Predictive control of cascaded H-bridge converters under unbalanced power generation’, IEEE Trans. Ind. Electron., 2017, 64, (1), pp. 413.
    14. 14)
      • 24. Vafaie, M.H., Dehkordi, B.M., Moallem, P., et al: ‘Improving the steady-state and transient-state performances of PMSM through an advanced deadbeat direct torque and flux control system’, IEEE Trans. Power Electron., 2017, 32, (4), pp. 29642975.
    15. 15)
      • 18. Rashwan, A., Sayed, M.A., Mobarak, Y.A., et al: ‘Predictive controller based on switching state grouping for a modular multilevel converter with reduced computational time’, IEEE Trans. Power Deliv., 2017, 32, (5), pp. 21892198.
    16. 16)
      • 3. Cecati, C., Aquila, A.D., Liserre, M., et al: ‘A passivity-based multilevel active rectifier with adaptive compensation for traction applications’, IEEE Trans. Ind. Appl., 2003, 39, (5), pp. 14041413.
    17. 17)
      • 20. Cortes, P., Wilson, A., Kouro, S., et al A.-Rub H.: ‘Model predictive control of multilevel cascaded h-bridge inverters’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 26912699.
    18. 18)
      • 13. Moeini, A., Zhao, H., Wang, S.: ‘A current reference based selective harmonic current mitigation PWM technique to improve the performance of cascaded h-bridge multilevel active rectifiers’, IEEE Trans. Ind. Electron., 2018, 65, (1), pp. 727737.
    19. 19)
      • 17. Holtz, J.: ‘Advanced PWM and predictive control – an overview’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 38373844.
    20. 20)
      • 19. Moon, J.-W., Gwon, J.-S., Park, J.-W., et al: ‘Model predictive control with a reduced number of considered states in a modular multilevel converter for HVDC system’, IEEE Trans. Ind. Deliv., 2015, 30, (2), pp. 608617.
    21. 21)
      • 12. Marzoughi, A., Imaneini, H.: ‘Optimal selective harmonic elimination for cascaded H-bridge-based multilevel rectifiers’, IET Power Electron., 2014, 7, (2), pp. 350356.
    22. 22)
      • 16. Vazquez, S., Rodriguez, J., Rivera, M., et al: ‘Model predictive control for power converters and drives: advances and trends’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 935947.
    23. 23)
      • 9. Blahnik, V., Kosan, T., Peroutka, Z., et al: ‘Control of single-phase cascaded h-bridge active rectifier under unbalanced load’, IEEE Trans. Power Electron., early access.
    24. 24)
      • 1. S.-Ruiz, A., Mazuela, M., Alvarez, S., et al: ‘Medium voltage–high power converter topologies comparison procedure, for a 6.6 kV drive application using 4.5 kV IGBT modules’, IEEE Trans. Ind. Electron., 2012, 59, (3), pp. 14621476.
    25. 25)
      • 4. Aquila, A.D., Liserre, M., Monopoli, V.G., et al: ‘Overview of pi-based solutions for the control of dc buses of a single-phase h-bridge multilevel active rectifier’, IEEE Trans. Ind. Appl., 2008, 44, (3), pp. 857866.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2016.0933
Loading

Related content

content/journals/10.1049/iet-pel.2016.0933
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading