access icon free Adaptive vector control based wave-to-wire model of wave energy converters

This study presents a complete wave-to-wire model in which a novel wave energy converter control approach based on adaptive vector control is introduced. The proposed control for maximum power absorption of the primary resource is included, as well as the grid interconnection topology and required controllers, needed for processing the power over the entire wave energy conversion chain. Thanks to the adaptive performance of the proposed controller, maximum energy extraction can be instantaneously achieved regardless of the current irregular wave characteristics of the resource. Finally, the proposed electrical configuration arises as a suitable grid interconnection solution, as it not only provides maximum power supply from the wave energy resource, but it also contributes towards further reducing its output power oscillations.

Inspec keywords: power grids; power convertors; power generation control; adaptive control; wave power generation

Other keywords: electrical configuration; irregular wave characteristics; maximum energy extraction; wave energy converter control approach; adaptive vector control based wave-to-wire model; grid interconnection topology; wave energy conversion chain; output power oscillation reduction; maximum power absorption

Subjects: Control of electric power systems; Power convertors and power supplies to apparatus; Wave power; Self-adjusting control systems

References

    1. 1)
      • 24. Rodriguez, P., Luna, A., Muñoz-Aguilar, R.S., et al: ‘A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions’, IEEE Trans. Power Electron., 2012, 27, (1).
    2. 2)
      • 2. Clément, A., McCullen, P., et al: ‘Wave energy in Europe: current status and perspectives’, Renew. Sustain. Energy Rev., 2002, 6, (5), pp. 405431.
    3. 3)
      • 3. Khan, J., Bhuyan, G.S., Moshref, A., et al: ‘An Assessment of variable characteristics of the pacific northwest region's wave and tidal current power resources, and their interaction with electricity demand and implications for large scale development scenarios for the region’ (Powertech Labs Inc., 2008).
    4. 4)
      • 8. Czech, B., Bauer, P.: ‘Wave energy converter concepts: design challenges and classification’, IEEE Ind. Electron. Mag., 2012, 6, (2), pp. 416.
    5. 5)
      • 28. Blaabjerg, F., Teodorescu, R., Liserre, M., et al: ‘Overview of control and grid synchronization for distributed power generation systems’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 13981409.
    6. 6)
      • 27. Singh, M., Khadkikar, V., Chandra, A.: ‘Grid synchronisation with harmonics and reactive power compensation capability of a permanent magnet synchronous generator-based variable speed wind energy conversion system’, IET Power Electron., 2011, 4, (1), pp. 122130.
    7. 7)
      • 11. Nielsen, S.R.K., Zhou, Q., Kramer, M.M., et al: ‘Optimal control of nonlinear wave energy point converters’, Ocean Eng., 2013, 72, pp. 176187.
    8. 8)
      • 9. O'Sullivan, D.L., Dalton, G., et al: ‘Regulatory, technical and financial challenges in the grid connection of wave energy devices’, IET Renew. Power Gener., 2010, 4, (6), pp. 555567.
    9. 9)
      • 13. da Costa, J.S., Beirao, P., Valerio, D.: ‘Internal model control applied to the Archimedes wave swing’. Int. Conf. on Systems and Computer Science, 2007.
    10. 10)
      • 15. Tedeschi, E., Carraro, M., Molinas, M., et al: ‘Effect of control strategies and power take-off efficiency on the power capture from sea waves’, IEEE Trans. Energy Convers., 2011, 26, (4).
    11. 11)
      • 31. Cantarellas, A.M., Rakhshani, E., Remon, D., et al: ‘Design of the LCL+trap filter for the two-level VSC installed in a large-scale wave power plant’. 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, 2013, pp. 707712.
    12. 12)
      • 32. Sanatkar-Chayjani, M., Monfared, M.: ‘Design of LCL and LLCL filters for single-phase grid connected converters’, IET Power Electron., 2016, 9, (9), pp. 19711978.
    13. 13)
      • 12. Hals, J., Falnes, J., Moan, T.: ‘Constrained optimal control of a heaving buoy wave energy converter’, J. Offshore Mech. Arct. Eng., 2011, 133.
    14. 14)
      • 23. Teodorescu, R., Liserre, M., Rodriguez, P.: ‘Grid converters for photovoltaic and wind power systems’ (Wiley-IEEE Press, 2011).
    15. 15)
      • 18. Michel, W.H.: ‘Sea spectra revisited’, Marine Technol., 1999, 36, (4), pp. 211227.
    16. 16)
      • 1. Margheritini, L., Hansen, A.M., et al: ‘A method for EIA scoping of wave energy converters – based on classification of the used technology’, Environ. Impact Assess. Rev., 2012, 32, (1), pp. 3344.
    17. 17)
      • 6. Falcão, A.F.d.O.: ‘Wave energy utilization: A review of the technologies’, Renew. Sustain. Energy Rev., 2010, 14, (3), pp. 899918.
    18. 18)
      • 4. Khan, J., Bhuyan, G.S., Moshref, A.: ‘Potential opportunities and differences associated with integration of ocean wave and marine current energy plants in comparison to wind energy’, a report prepared by Powertech Labs for the IEA-OES, 2009.
    19. 19)
      • 21. Falnes, J.: ‘Ocean waves and oscillating systems: linear interaction including wave-energy extraction’ (Cambridge University Press, 2004).
    20. 20)
      • 33. Cantarellas, A.M., Rakhshani, E., Remon, D., et al: ‘Grid connection control of VSC-based high power converters for wave energy applications’. 39th Annual Conf. of the IEEE Industrial Electronics Society, IECON 2013, 10–13 November 2013, pp. 50925097.
    21. 21)
      • 25. Bose, B.K.: ‘Modern power electronics and AC drives’ (Penitence-Hall, 2002).
    22. 22)
      • 26. Krishnan, R.: ‘Electric motor drives – modelling, analysis and control’ (Penitence-Hall, 2001).
    23. 23)
      • 30. Vítečková, M., Víteček, A.: ‘Modulus optimum for digital controllers’, Acta Montan. Slovaca, 2003, 8, (4), pp. 214216.
    24. 24)
      • 17. O'Sullivan, D.L., Dalton, G.: ‘Challenges in the grid connection of wave energy devices’. Wave and Tidal Energy, European Conf. in (EWTEC), 2009.
    25. 25)
      • 14. Fusco, F., Ringwood, J.V.: ‘A simple and effective real-time controller for wave energy converters’, IEEE Trans. Sustain. Energy, 2013, 4, (1), pp. 2130.
    26. 26)
      • 10. Hals, J., Falnes, J., Moan, T.: ‘A comparison of selected strategies for adaptive control of wave energy converters’, J. Offshore Mech. Arct. Eng., 2011.
    27. 27)
      • 29. Vidal, A., Freijedo, F.D., Yepes, A.G., et al: ‘Transient response evaluation of stationary-frame resonant current controllers for grid-connected applications’, IET Power Electron., 2014, 7, (7), pp. 17141724.
    28. 28)
      • 5. Khan, J., Bhuyan, G.S., et al: ‘Ocean wave and tidal current conversion technologies and their interaction with electrical networks’. Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, 2008, 2008.
    29. 29)
      • 19. Ricci, P., Saulnier, J.B., de O. Falcao, A.F., et al: ‘Time domain models and wave energy converters performance assessment’. Proc. 27th Int. Conf. on Offshore Mechanics and Artic Engineering, Estoril, Portugal, 15–20 June 2008, pp. 110.
    30. 30)
      • 7. Drew, B., Plummer, A.R., et al: ‘A review of wave energy converter technology’, Proc. Inst. Mech. Eng. A, J. Power Energy, 2009, 223, (8), pp. 887902.
    31. 31)
      • 20. Taghipour, R., Perez, T., Moan, T.: ‘Hybrid frequency-time domain models for dynamic response analysis of marine structures’, Ocean Eng., 2008, 35, (7).
    32. 32)
      • 16. Molinas, M., Skjervheim, O., et al: ‘Power electronics as grid interface for actively controlled wave energy converters’. Int. Conf. on Clean Electrical Power, 2007, ICCEP '07, 2007.
    33. 33)
      • 22. Cantarellas, A.M., Remon, D., Koch-Ciobotaru, C., et al: ‘Adaptive power control of wave energy converters for maximum power absorption under irregular sea-state conditions’. 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, 2015, pp. 66556659.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2016.0796
Loading

Related content

content/journals/10.1049/iet-pel.2016.0796
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading