access icon free Current limiting soft starter for three phase induction motor drive system using PWM AC chopper

This study presents a new current-limiting soft-starter for a three-phase induction motor drive system using pulse width modulation (PWM) AC chopper. A novel configuration of three-phase PWM AC chopper using only four insulated gate bipolar transistors (IGBTs) is also proposed. The proposed control strategy does not require zero crossing detection circuits, which employed in thyristorised soft starters. It requires only one current sensor. The duty ratio of the chopper IGBTs is obtained from the closed-loop current control in order to limit the motor starting current at a preset value. Only two complementary gate pulses are obtained from the control circuit to control the four IGBT switches. The proposed control strategy is characterised by a simple control loop; thus, a low-cost processor can be used due to the low-computation burden. The superiority of the proposed strategy is proved theoretically and confirmed experimentally. The experimental work is developed using a laboratory prototype system composed of DSP-DS1104 digital control board and 1.5 HP induction motor. The proposed starter offers a smooth start-up for the motor speed, torque ripple minimisation, less number of semiconductor switches, less switching and conduction losses, less harmonics and improved input power factor.

Inspec keywords: starting; power factor; power semiconductor switches; insulated gate bipolar transistors; pulse width modulation; electric current control; closed loop systems; choppers (circuits); induction motor drives

Other keywords: smooth start-up; motor speed; thyristorised soft starter; low-computation burden; torque ripple minimisation; control strategy; insulated gate bipolar transistors; pulse width modulation AC chopper; current-limiting soft-starter; 1.5 HP induction motor; improved input power factor; low-cost processor; switching loss; IGBT switches; less semiconductor switch number; closed-loop current control; laboratory prototype system; DSP-DS1104 digital control board; three-phase PWM AC chopper; conduction loss; motor starting current; control circuit; chopper IGBT duty ratio; current sensor; less harmonics; three-phase induction motor drive system

Subjects: Relays and switches; Current control; Power electronics, supply and supervisory circuits; Control of electric power systems; Asynchronous machines; Drives; Bipolar transistors; Insulated gate field effect transistors; Power semiconductor devices

References

    1. 1)
      • 18. Muchlas, H.S.: ‘Use of the maximum torque sensor to reduce the starting current in the induction motor’, Sens. Transducers J., 2010, 114, (3), pp. 161169.
    2. 2)
      • 36. Nejad, M.L., et al: ‘New cascade boost converter with reduced losses’, IET Power Electron., 2016, 9, (6), pp. 12131219.
    3. 3)
      • 24. Nied, A., Oliveira, J., Farias Campos, R., et al: ‘Soft starting of induction motor with torque control’, IEEE Trans. Ind. Appl., 2010, 46, (3), pp. 10021010.
    4. 4)
      • 9. Huang, W., Yuan, Y., Chang, Y.: ‘A novel soft start method based on auto-transformer and magnetic control’. Proc. IEEE Int. Conf. on Industrial Technology (ICIT), 2016, pp. 20182113.
    5. 5)
      • 5. Curiac, D.R., Singhal, S.: ‘Rotor and stator stresses during starting of induction motors used in cement industry applications’. Proc. IEEE Cement Industry Technical Conf. Record, 2009.
    6. 6)
      • 26. Park, S.-J., Kim, W.-Y.: ‘AC-chopper application for CW CO2 laser’, Opt. Laser Technol., 2010, 42, pp. 269273.
    7. 7)
      • 10. Liang, X., Ilochonwu, O.: ‘Induction motor starting in practical industrial applications’, IEEE Trans. Ind. Appl., 2011, 47, (1), pp. 271280.
    8. 8)
      • 29. Mishima, T., Nakagawa, Y., Nakaoka, M.: ‘A bridgeless BHB ZVS-PWM AC–AC converter for high-frequency induction heating applications’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 33043315.
    9. 9)
      • 28. Khan, S.A., Cha, H., Kim, H.G., et al: ‘Three-phase three-limb coupled inductor for three-phase direct PWM AC–AC converters solving commutation problem’, IEEE Trans. Ind. Electron., 2016, 63, (1), pp. 89201.
    10. 10)
      • 3. Patil, L.S., thosar, A.G.: ‘Application of D-STATCOM to mitigate voltage sag due to DOL starting of three phase induction motor’. Proc. Int. Conf. on Control, Automation, Communication and Energy Conversion, June 2009, pp. 14.
    11. 11)
      • 15. Nafeesa, K., George, S.: ‘Design and implementation of AC voltage controller-fed induction motor starting through particle swarm optimisation’, Int. J. Power Electron., 2015, 7, (3-4), pp. 207225.
    12. 12)
      • 21. Sundareswaran, K., Srinivasa, P., Nayak, R.: ‘Design of feedback controller for soft-starting induction motor drive system using genetic algorithm’, Int. J. Ind. Electron. Drives, 2014, 1, (2), pp. 111120.
    13. 13)
      • 35. Eltamaly, A.M., Alolah, A.I., Hamouda, R.M.: ‘A novel digital firing scheme for soft starting of three-phase induction motors’. Proc. 4thIEEE-GCC Conf., November 2007.
    14. 14)
      • 4. Gomez, J.C., Morcos, M.M.: ‘A simple methodology for estimating the effect of voltage sags produced by induction motor starting cycles on sensitive equipment’. Proc. Thirty-Sixth IAS Annual Meeting Conf. Record of the Industry Applications, 2001, vol. 2, pp. 11961199.
    15. 15)
      • 22. Sundareswaran, K., Nayak, P.S.: ‘Ant colony based feedback controller design for soft-starter fed induction motor drive’, Appl. Soft Comput., 2012, 12, pp. 15661573.
    16. 16)
      • 19. Solveson, M.G., Mirafzal, B., Demerdash, N.A., et al: ‘Soft-started induction motor modeling and heating issues for different starting profiles using a flux linkage ABC frame of reference’, IEEE Trans. Ind. Appl., 2006, 42, (4), pp. 973982.
    17. 17)
      • 33. Kim, S., Kim, H., Cha, H.: ‘Dynamic voltage restorer using switching cell structured multilevel AC-AC converter’, IEEE Trans. Power Electron., 2016DOI: 10.1109/TPEL.2016.2645722.
    18. 18)
      • 34. Telles, B.L., Andersen, R.L., Barbi, I., et al: ‘A switched-capacitor three-phase AC–AC converter’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 735745.
    19. 19)
      • 11. Makky, A.M., El-bar, F.A., Ahmed, N.A., et al: ‘Non conventional method for soft starting of three phase induction motors’. Proc. Int. Conf. on Electrical, Electronic and Computer Engineering (ICEEC'04), 2004, pp. 913918.
    20. 20)
      • 14. Faizal, A.A., Subburaj, P.: ‘Intelligence based soft starting scheme for the three phase squirrel cage induction motor with extinction angle AC voltage controller’, Circuits Syst., 2016, 7, (9), pp. 27522770.
    21. 21)
      • 25. Ahmed, N.A., El Enezi, F.Q., Al-Othman, A.K.: ‘Comprehensive analysis and transient modeling of symmetrical single phase PWM AC–AC voltage converters’, Electr. Power Syst. Res., 2011, 81, pp. 5765.
    22. 22)
      • 30. Liu, H., Wang, J., Kiselychnyk, O.: ‘Mathematical modeling and control of a cost effective AC voltage stabilizer’, IEEE Trans. Power Electron., 2016, 31, (11), pp. 80078016.
    23. 23)
      • 8. IMujawar, I., Patil, S.D., Gudaru, U., et al: ‘A closed loop TBSC compensator for direct online starting of induction motors with voltage sag mitigation’. Proc. of the World Congress on Engineering and Computer Science WCECS, San Francisco, USA, October 2013, no. 1.
    24. 24)
      • 13. Rajaji, L., Kumar, C., Vasudevan, M.: ‘Fuzzy and ANFIS based soft starter fed induction motor drive for high performance applications’, ARPN J. Eng. Appl. Sci., 2008, 3, pp. 1224.
    25. 25)
      • 12. Gastli, A., Ahmed, M.M.: ‘ANN-based soft starting of voltage-controlled-fed IM drive system’, IEEE Trans. Energy Convers., 2005, 20, (3), pp. 497503.
    26. 26)
      • 1. Larabee, J., Pellegrino, B., Flick, B.: ‘Induction motor stating methods and issues’. Proc. Annual Petroleum and Chemical Industry Conf. in Industry Applications, 2005, pp. 217222.
    27. 27)
      • 20. Zenginobuz, G., Cadirci, I., Ermis, M., et al: ‘Performance optimization of induction motors during voltage-controlled soft starting’, IEEE Trans. Energy Convers., 2004, 19, (2), pp. 278288.
    28. 28)
      • 6. Melfi, M.J., Umans, S.D.: ‘Transients during line-starting of squirrel cage induction motors’. Proc. 57thAnnual Petroleum and Chemical Industry Conf. Industry Applications Society (PCIC), 2010, pp. 18.
    29. 29)
      • 23. Gurkan, Z., Cadirci, I., Ermis, M., et al: ‘Soft starting of large induction motors at constant current with minimized starting torque pulsations’, IEEE Trans. Ind. Appl., 2001, 37, (5), pp. 13341347.
    30. 30)
      • 17. Nithin, K.S., Jos, B.M., Rafeek, M.: ‘An improved method for starting of induction motor with reduced transient torque pulsations’, Int. J. Adv. Res. Electr. Electron. Instrum. Eng., 2013, 2, (1), pp. 462470.
    31. 31)
      • 2. Mc Elveen, R., Toney, M.: ‘Starting high inertia loads’, IEEE Trans. Ind. Appl., 2001, 37, (1), pp. 137144.
    32. 32)
      • 7. Silva, F.B.B., Baldan, C.A., Fardin, J.F., et al: ‘Starting current limitation method using HTS for induction motors’, J. Supercond. Novel Magn., 2015, 28, (2), pp. 697700.
    33. 33)
      • 27. Kale, M., Karabacak, M., Saracoglu, B.: ‘A novel hysteresis band current controller scheme for three phase AC chopper’, Electr. Power Energy Syst., 2013, 44, pp. 219226.
    34. 34)
      • 31. Khan, M.R., Dong, A.F.: ‘Improved ac/ac choppers-based voltage regulator designs’, IET Power Electron., 2014, 7, (8), pp. 19892000.
    35. 35)
      • 32. Li, P., Hu, Y.: ‘Unified non-inverting and inverting PWM AC-AC converter with versatile modes of operation’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 11371147.
    36. 36)
      • 16. Nafeesa, K., George, S.: ‘Performance comparison of two-leg and three-leg AC voltage controller-fed three phase induction motor drive’, J. Electr. Syst., 2012, 8, (1), pp. 1322.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2016.0762
Loading

Related content

content/journals/10.1049/iet-pel.2016.0762
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading