Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design considerations for high-power converters interfacing 10 MW superconducting wind power generators

The design of power electronic converters for the integration of wind generated power into the grid is more and more important due to a new class of superconducting generators (SG) with power ratings of up to 20 MW. High efficiency of power converters for high-power applications is mandatory in order to reduce the overall cost of the system. This study proposes a design method to minimise the cost of the system by finding the optimal number of power devices and capacitors for different high-power converter topologies. The investigation focuses on determining the optimal number of voltage levels for a back-to-back (BTB) neutral point clamped (NPC) converter. The design method is demonstrated by estimating the cost of different BTB NPC power converter topologies for the integration of a 10 MW SG to the grid.

References

    1. 1)
      • 10. Pan, Z., Peng, F.Z., Corzine, K.A., et al: ‘Voltage balancing control of diode-clamped multilevel rectifier/inverter systems’, IEEE Trans. Ind. Appl., 2005, 41, (6), pp. 16981706.
    2. 2)
      • 22. Shalchi Alishah, R., Nazarpour, D., Hosseini, S.H., et al: ‘Novel topologies for symmetric, asymmetric, and cascade switched-diode multilevel converter with minimum number of power electronic components’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 53005310.
    3. 3)
      • 14. Masaoud, A., Ping, H.W., Mekhilef, S., et al: ‘New three-phase multilevel inverter with reduced number of power electronic components’, IEEE Trans. Power Electron., 2014, 29, (11), pp. 60186029.
    4. 4)
      • 6. Nabae, A., Takahashi, I., Akagi, H.: ‘A new neutral-point-clamped PWM inverter’, IEEE Trans. Ind. Appl., 1981, IA-17, (5), pp. 518523.
    5. 5)
      • 28. INNWIND: ‘Deliverable D3.32 converter designs based on new components and modular multilevel topologies’, September 2014, http://www.innwind.eu/, accessed 23 June 2016.
    6. 6)
      • 9. Ishida, T., Matsuse, K., Miyamoto, T., et al: ‘Fundamental characteristics of five-level double converters with adjustable dc voltages for induction motor drives’, IEEE Trans. Ind. Electron., 2002, 49, (4), pp. 775782.
    7. 7)
      • 20. Zamiri, E., Vosoughi, N., Hosseini, S.H., et al: ‘A new cascaded switched-capacitor multilevel inverter based on improved series–parallel conversion with less number of components’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 35823594.
    8. 8)
      • 27. www.uk.mouser.com, accessed 23 June 2016.
    9. 9)
      • 12. Kangarlu, M.F., Babaei, E., Laali, S.: ‘Symmetric multilevel inverter with reduced components based on non-insulated dc voltage sources’, IET Power Electron., 2012, 5, (5), pp. 571581.
    10. 10)
      • 25. Hitachi Power Semiconductor Device, Ltd. ‘High voltage IGBT module application manual’, 2009).
    11. 11)
      • 13. Gupta, K.K., Jain, S.: ‘Multilevel inverter topology based on series connected switched sources’, IET Power Electron., 2013, 6, (1), pp. 164174.
    12. 12)
      • 21. Babaei, E., Kangarlu, M.F., Hosseinzadeh, M.A.: ‘Asymmetrical multilevel converter topology with reduced number of components’, IET Power Electron., 2013, 6, (6), pp. 11881196.
    13. 13)
      • 24. Backlund, B., Rahimo, M., Klaka, S., et al: ‘Topologies, voltage ratings and state of the art high power semiconductor devices for medium voltage wind energy conversion’. Proc. on Power Electronics and Machines in Wind Applications, 2009, pp. 16.
    14. 14)
      • 16. Ajami, A., Oskuee, M.R.J., Mokhberdoran, A., et al: ‘Developed cascaded multilevel inverter topology to minimise the number of circuit devices and voltage stresses of switches’, IET Power Electron., 2014, 7, (2), pp. 459466.
    15. 15)
      • 23. Shalchi Alishah, R., Nazarpour, D., Hosseini, S.H., et al: ‘New hybrid structure for multilevel inverter with fewer number of components for high-voltage levels’, IET Power Electron., 2014, 7, (1), pp. 96104.
    16. 16)
      • 17. Shalchi Alishah, R., Nazarpour, D., Hosseini, S.H., et al: ‘Switched-diode structure for multilevel converter with reduced number of power electronic devices’, IET Power Electron., 2014, 7, (3), pp. 648656.
    17. 17)
      • 5. Lai, J.S., Peng, F.Z.: ‘Multilevel converters – a new breed of power converters’, IEEE Trans. Ind. Appl., 1996, 32, (3), pp. 509517.
    18. 18)
      • 8. Marchesoni, M., Tenca, P.: ‘Diode-clamped multilevel converters: a practicable way to balance DC-link voltages’, IEEE Trans. Ind. Electron., 2002, 49, (4), pp. 752765.
    19. 19)
      • 15. Ajami, A., Jannati Oskuee, M.R., Khosroshahi, M.T., et al: ‘Cascade-multi-cell multilevel converter with reduced number of switches’, IET Power Electron., 2014, 7, (3), pp. 552558.
    20. 20)
      • 1. Innovative Wind Conversion Systems (10–20 MW) For Offshore Applications (INNWIND). Available at http://www.innwind.eu/, accessed 23 June 2016.
    21. 21)
      • 7. Tolbert, L.M., Peng, F.Z., Habetler, T.G.: ‘A multilevel converter-based universal power conditioner’, IEEE Trans. Ind. Appl., 2000, 36, (2), pp. 596603.
    22. 22)
      • 26. Zeng, X., Chen, Z., Blaabjerg, F.: ‘Design and comparison of full-size converters for large variable-speed wind turbines’. European Conf. on Power Electronics and Applications, 2007.
    23. 23)
      • 4. Zhu, Z.Q., Hu, J.B.: ‘Electrical machines and power-electronic systems for high-power wind energy generation applications, part II: power electronics and control systems’, COMPEL, Int. J. Comput. Math. Electr. Electron. Eng., 2013, 32, (1), pp. 3471.
    24. 24)
      • 3. Gupta, K.K., Jain, S.: ‘Comprehensive review of a recently proposed multilevel inverter’, IET Power Electron., 2014, 7, (3), pp. 467479.
    25. 25)
      • 11. Gupta, K.K., Jain, S.: ‘Topology for multilevel inverters to attain maximum number of levels from given DC sources’, IET Power Electron., 2012, 5, (4), pp. 435446.
    26. 26)
      • 2. Ma, K., Blaabjerg, F.: ‘Thermal optimised modulation methods of three-level neutral-point-clamped inverter for 10 MW wind turbines under low-voltage ride through’, IET Power Electron., 2012, 5, (6), pp. 920927.
    27. 27)
      • 18. Toupchi Khosroshahi, M.: ‘Crisscross cascade multilevel inverter with reduction in number of components’, IET Power Electron., 2014, 7, (12), pp. 29142924.
    28. 28)
      • 19. Shalchi Alishah, R., Nazarpour, D., Hosseini, S.H., et al: ‘Reduction of power electronic elements in multilevel converters using a new cascade structure’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 256269.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2016.0512
Loading

Related content

content/journals/10.1049/iet-pel.2016.0512
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address