Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Simplified model predictive control with variable weighting factor for current ripple reduction

Finite control set model predictive control evaluates a predefined cost function for each switching state of power converter. In addition to reference tracking term, cost function can include a term for switching frequency reduction. Small value for the weighting factor of switching reduction term cannot reduce switching frequency effectively and the great value results in reference tracking failure and increase current ripple. In this study a variable weighting factor based on current ripple is obtained and applied to the cost function. The value of weighting factor changes with the position and magnitude of reference voltage. Simulation and experimental results verify the effectiveness of proposed method.

References

    1. 1)
      • 23. Geyer, T., Papafotiou, G., Morari, M.: ‘Model predictive direct torque control—part I: concept, algorithm, and analysis’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 18941905.
    2. 2)
      • 21. Vargas, R., Cortés, P., Ammann, U., et al: ‘Predictive control of a three-phase neutral-point-clamped inverter’, IEEE Trans. Ind. Electron., 2007, 54, (5), pp. 26952705.
    3. 3)
      • 4. Rivera, M., Rojas, C., Wilson, A., et al: ‘Review of predictive control methods to improve the input current of an indirect matrix converter’, IET Power Electron., 2014, 7, (4), pp. 886894.
    4. 4)
      • 22. Vargas, R., Ammann, U., Rodríguez, J.: ‘Predictive approach to increase efficiency and reduce switching losses on matrix converters’, IEEE Trans. Power Electron., 2009, 24, (4), pp. 894902.
    5. 5)
      • 19. Li, X., Shadmand, M.B., Balog, R.S., et al: ‘A harmonic constrained minimum energy controller for a single-phase grid-tied inverter using model predictive control’. IEEE Energy Conversion Congress and Exposition, Montreal, QC, September 2015, pp. 51535159.
    6. 6)
      • 27. Abbaszadeh, A., Arab Khaburi, D., Kennel, R., et al: ‘Hybrid exploration state for the simplified finite control set-model predictive control with a deadbeat solution for reducing the current ripple in permanent magnet synchronous Motor’, IET Electr. Power Appl., 2017, 11, (5), pp. 823835, doi: 10.1049/iet-epa.2016.0366.
    7. 7)
      • 12. Zhang, Y., Yang, H.: ‘Model-predictive flux control of induction motor drives with switching instant optimization’, IEEE Trans. Energy Conversion, 2015, 30, (3), pp. 11131122.
    8. 8)
      • 24. Geyer, T.: ‘Computationally efficient model predictive direct torque control’, IEEE Trans. Power Electron., 2011, 26, (10), pp. 28042816.
    9. 9)
      • 8. Mahmoudi, H., Aleenejad, M., Ahmadi, R.: ‘A new modulated model predictive control method for mitigation of effects of constant power loads’. IEEE Power and Energy Conf., Illinois, 2016, pp. 15.
    10. 10)
      • 15. Vargas, R., Rodrıguez, J., Ammann, U., et al: ‘Predictive current control of an induction machine fed by a matrix converter with reactive power control’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 43624371.
    11. 11)
      • 1. Rodríguez, J., Kazmierkowski, M.P., Espinoza, J.R., et al: ‘State of the art of finite control set model predictive control in power electronics’, IEEE Trans. Ind. Inf., 2013, 9, (2), pp. 10031016.
    12. 12)
      • 2. Cortes, P., Kazmiekowski, M.P., Kennel, R.M., et al: ‘Predictive control in power electronics and drives’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 43124324.
    13. 13)
      • 7. Kouro, S., Rocca, B.L., Cortés, P., et al: ‘Predictive control based selective harmonic elimination with low switching frequency for multilevel converters’. IEEE Energy Conversion Congress and Exposition, San Jose, CA, September 2009, pp. 31303136.
    14. 14)
      • 25. Narayanan, G., Ranganathan, V.T.: ‘Analytical evaluation of harmonic distortion in PWM ac drives using the notion of stator flux ripple’, IEEE Trans. Power Electron., 2005, 20, (2), pp. 466474.
    15. 15)
      • 3. Rivera, M., Rodriguez, J., Vazquez, S.: ‘Predictive control in power converters and electrical drives—part i’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 38343836.
    16. 16)
      • 30. Sozer, Y., Torrey, D.A., Mese, E.: ‘Adaptive predictive current control technique for permanent magnet synchronous motors’, IET Power Electron., 2013, 6, (1), pp. 919.
    17. 17)
      • 17. Mahmoudi, H., Lesani, M.J., Khabouri, D.A.: ‘Online fuzzy tuning of weighting factor in model predictive control of PMSM’. Iranian Conf. on Fuzzy Systems, Qazvin, August 2013, pp. 15.
    18. 18)
      • 18. Leuer, M., Böcker, J.: ‘Self-optimizing model predictive direct torque control for electrical drives’. IEEE Int. Symp. on Industrial Electronics, Buzios, June 2015, pp. 10461051.
    19. 19)
      • 20. Wolbank, T.M., Stumberger, R., Lechner, A., et al: ‘A novel control strategy for optimal inverter switching frequency associated with minimal current ripple using single step predictive current control’. European Conf. on Power Electronics and Applications, Barcelona, September 2009, pp. 19.
    20. 20)
      • 32. Xia, C., Liu, T., Shi, T., et al: ‘A simplified finite-control-set model-predictive control for power converters’, IEEE Trans. Ind. Informat., 2014, 10, (2), pp. 9911002.
    21. 21)
      • 6. Uddin, M., Mekhilef, S., Rivera, M.: ‘Experimental validation of minimum cost function-based model predictive converter control with efficient reference tracking’, IET Power Electron., 2015, 8, (2), pp. 278287.
    22. 22)
      • 14. Muller, S., Ammann, U., Rees, S.: ‘New time-discrete modulation scheme for matrix converters’, IEEE Trans. Ind. Electron., 2005, 52, (6), pp. 16071615.
    23. 23)
      • 13. Vargas, R., Ammann, U., Rodrıguez, J., et al: ‘Predictive strategy to control common-mode voltage in loads fed by matrix converters’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 43724380.
    24. 24)
      • 11. Davari, S.A., Khaburi, D.A., Kennel, R.: ‘Using a weighting factor table for FCS-MPC of induction motors with extended prediction horizon’. Annual Conf. on IEEE Industrial Electronics Society, Montreal, QC, October 2012, pp. 20862091.
    25. 25)
      • 16. Thielemans, S., Vyncke, T.J., Melkebeek, J.: ‘Weight factor selection for model-based predictive control of a four-level flying-capacitor inverter’, IET Power Electron., 2012, 5, (3), pp. 323333.
    26. 26)
      • 9. Davari, S.A., Khaburi, D.A., Kennel, R.: ‘An improved FCS–MPC algorithm for an induction motor with an imposed optimized weighting factor’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 15401551.
    27. 27)
      • 31. Wang, S., Wan, S.: ‘Full digital deadbeat speed control for permanent magnet synchronous motor with load compensation’, IET Power Electron., 2013, 6, (4), pp. 634641.
    28. 28)
      • 29. Xie, W., Wang, X., Wang, F.: ‘Finite control set-model predictive torque control with a deadbeat solution for PMSM drives’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 54025410.
    29. 29)
      • 5. Abbaszadeh, A., Arab Khaburi, D., Rodríguez, J.: ‘Predictive control of permanent magnet synchronous motor with non-sinusoidal flux distribution for torque ripple minimization using the recursive least square identification method’, IET Electr. Power Appl., 2017, 11, (5), pp. 847856, doi: 10.1049/iet-epa.2016.0315.
    30. 30)
      • 10. Uddin, M., Mekhilef, S., Rivera, M.: ‘Predictive indirect matrix converter fed torque ripple minimization with weighting factor optimization’. Int. Power Electronics Conf., Hiroshima, May 2014, pp. 35743581.
    31. 31)
      • 26. Narayanan, G., Zhao, D., Krishnamurthy, H.K., et al: ‘Space vector based hybrid PWM techniques for reduced current ripple’, IEEE Trans. Ind. Electron., 2008, 55, (4), pp. 16141627.
    32. 32)
      • 33. Kukrer, O.: ‘Discrete-time current control of voltage fed three-phase PWM inverters’, IEEE Trans. Ind. Electron., 1996, 11, (2), pp. 260269.
    33. 33)
      • 28. Krishnan, R.: ‘Permanent magnet synchronous and brushless dc motor drives’ (CRC Press, 2010).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2016.0483
Loading

Related content

content/journals/10.1049/iet-pel.2016.0483
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address