access icon free Dual-mode LQR-feedforward optimal control for non-minimum phase boost converter

A digital dual-mode linear quadratic regulator (LQR) with feedforward optimal controller is presented, which allows voltage control of a boost converter for wide-load-range condition, whether in continuous conduction mode (CCM) or in discontinuous conduction mode (DCM). Based on the conventional LQR method, the proposed controller is designed and makes the following two improvements. First, in order to eliminate the phase error caused by right-half-phase zero emerged in non-minimum phase boost converter, a feedforward controller is implemented by zero phase error tracking control technique because the inverse of non-minimum phase system is unstable. Second, since the models of DC–DC converter in CCM or DCM are different, the proposed control strategy allows boost converter to autonomously operate in CCM or DCM controller by utilising a mode detector. The proposed mode detector greatly enhances the control performance in both operating modes. Finally, the proposed controller has been implemented for voltage control of a boost converter. The simulation and experimental results show the proposed controller offers better performance in both transient response and frequency response than the conventional LQR controller.

Inspec keywords: control system synthesis; digital control; phase control; phase convertors; feedforward; linear quadratic control; optimal control; DC-DC power convertors; voltage control

Other keywords: discontinuous conduction mode; linear quadratic regulator; DCM; dual-mode LQR -feedforward optimal control method; continuous conduction mode; DC-DC converter; transient response; nonminimum phase inverse system; frequency response; voltage control; CCM; phase error elimination; nonminimum phase boost converter; zero phase error tracking control technique

Subjects: Control system analysis and synthesis methods; Phase and gain control; Optimal control; Power electronics, supply and supervisory circuits; Discrete control systems; Voltage control

References

    1. 1)
    2. 2)
    3. 3)
      • 9. Jia, L., Zhang, H.: ‘Zero current detector for a DC–DC converter’. U.S. Patent US7928719 B2, 2011.
    4. 4)
    5. 5)
      • 6. Gusseme, K.D., Sype, D.M., Bossche, A.P., et al: ‘Input current distortion of CCM boost PFC converters operated in DCM’. Proc. Power Electronics Specialist, June 2003, pp. 16851690.
    6. 6)
      • 26. Basso, C.: ‘Designing control loops for linear and switching power supplies’ (Artech House Press, 2012).
    7. 7)
    8. 8)
      • 22. Rigney, B.P., Pao, L.Y., Lawrence, D.A.: ‘Model inversion architectures for settle time applications with uncertainty’. Proc. IEEE Conf. on Decision and Control, 2006, pp. 65186524.
    9. 9)
      • 5. Tan, S.C., Lai, Y.M., Tse, C.K.: ‘Sliding mode control of switching power converters: Techniques and Implementation’ (CRC Press, 2011).
    10. 10)
      • 8. Wang, S., Li, H., Chen, L., et al: ‘A novel zero-current detector for DCM operation in synchronous converter’. Proc. Int. Symp. Ind. Electron., May 2012, pp. 99104.
    11. 11)
    12. 12)
    13. 13)
      • 2. Maksimovic, D., Zane, R., Corradini, L.: ‘Advances in digital control for high-frequency switched-mode power converters’, Power Electron., 2010, 44, (12), pp. 219.
    14. 14)
      • 15. Hirschmann, D., Richter, S.: ‘Unified control strategy covering CCM and DCM for a synchronous buck converter’. Proc. Applied Power Electronics Conf. and Exposition, 2007, pp. 489494.
    15. 15)
      • 17. Costa, J.M.D.: ‘Design of linear quadratic regulators for quasi-resonant dc-dc converters’. Proc. Power Electronics Specialist, June 2001, pp. 422426.
    16. 16)
    17. 17)
    18. 18)
      • 18. Jaen, C., Pou, J., Pindado, R.: ‘A linear-quadratic regulator with integral action applied to PWM dc-dc converters’. Proc. IEEE Industrial Electronics, 2006, pp. 22802285.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • 4. Liu, Y.F., Meyer, E., Liu, X.D.: ‘Recent developments in digital control strategies for DC/DC switching power converters’, IEEE Trans. Power Electron., 2009, 24, (11), pp. 307314.
    23. 23)
      • 25. Suntio, T.: ‘Dynamic profile of switched-mode converter: modeling, analysis and control’ (Wiley-VCH Verlag GmbH and Co. KGaA Press, 2009).
    24. 24)
      • 21. Pao, L.Y., Butterworth, J.A., Abramovitch, D.Y.: ‘Combined feedforward/feedback control of atomic force microscopes’. Proc. America Control Conf., 2007, pp. 35093515.
    25. 25)
      • 12. Clark, C., Eberle, W., Musavi, F.: ‘An adaptive digital controller for the mixed conduction mode boost power factor correction converter’. Proc. Applied Power Electronics Conf. and Exposition, 2013, pp. 27122719.
    26. 26)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2016.0234
Loading

Related content

content/journals/10.1049/iet-pel.2016.0234
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading