Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Supercapacitor charge redistribution analysis for power management of wireless sensor networks

To support many power management applications in wireless sensor networks, a previously developed model is modified to predict the terminal behaviour of a supercapacitor under a dynamic charging/discharging power profile. In addition, a robust model parameter identification method based on the genetic algorithm is developed to determine the model parameters using a dynamic test and a self-discharge experiment. On the basis of the supercapacitor power input model, charge redistribution related figures of merit are derived and used to evaluate the significance of charge redistribution for supercapacitors with various rated capacitance. The results show that supercapacitors with different sizes share similar charge redistribution phenomenon. Furthermore, the charge redistribution significance is studied from several perspectives to provide guidelines for designing power management techniques that can achieve full potential of the energy stored in the supercapacitors.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 29. Polastre, J., Szewczyk, R., Culler, D.: ‘Telos: enabling ultra-low power wireless research’. IEEE Int. Symp. on Information Processing in Sensor Networks (IPSN), 2005.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 30. Renner, C., Turau, V.: ‘CapLibrate: self-calibration of an energy harvesting power supply with supercapacitors’. 23rd Int. Conf. on Architecture of Computing Systems, 2010, pp. 110.
    13. 13)
    14. 14)
    15. 15)
      • 32. Texas Instruments, TPS 61221 – Datasheet, January 2009. Available at http://www.focus.ti.com/lit/ds/symlink/tps61221.pdf.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 1. Simjee, F., Chou, P.H.: ‘Everlast: long-life, supercapacitor-operated wireless sensor node’. Proc. of the 2006 Int. Symp. on Low Power Electronics and Design (ISLPED), 2006, pp. 197202.
    21. 21)
    22. 22)
      • 33. Renner, C., Meier, F., Turau, V.: ‘Holistic online energy assessment: feasibility and practical application’. 2012 Ninth Int. Conf. on Networked Sensing Systems (INSS), 2012.
    23. 23)
    24. 24)
    25. 25)
      • 14. Zhu, T., Zhong, Z., Gu, Y., et al: ‘Leakage-aware energy synchronization for wireless sensor networks’. Proc. Seventh Int. Conf. on Mobile Systems, Applications, and Services, 2009, pp. 319332.
    26. 26)
      • 27. Maccor Battery and Cell Test Equipment (Model 4300). Available at http://www.maccor.com/Products/Model4300.aspx.
    27. 27)
    28. 28)
    29. 29)
      • 31. Renner, C., Jessen, J., Turau, V.: ‘Lifetime prediction for supercapacitor-powered wireless sensor nodes’. Proc. of FGSN, 2009, pp. 16.
    30. 30)
    31. 31)
    32. 32)
      • 21. Merrett, G.V., Weddell, A.S.: ‘Supercapacitor leakage in energy-harvesting sensor nodes: fact or fiction?’. 2012 Ninth Int. Conf. on Networked Sensing Systems (INSS), 2012, pp. 15.
    33. 33)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2015.1029
Loading

Related content

content/journals/10.1049/iet-pel.2015.1029
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address