http://iet.metastore.ingenta.com
1887

Review of dc–dc converters for multi-terminal HVDC transmission networks

Review of dc–dc converters for multi-terminal HVDC transmission networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a comprehensive review of high-power dc–dc converters for high-voltage direct current (HVDC) transmission systems, with emphasis on the most promising topologies from established and emerging dc–dc converters. In addition, it highlights the key challenges of dc–dc converter scalability to HVDC applications, and narrows down the desired features for high-voltage dc–dc converters, considering both device and system perspectives. Attributes and limitations of each dc–dc converter considered in this study are explained in detail and supported by time-domain simulations. It is found that the front-to-front quasi-two-level operated modular multilevel converter, transition arm modular converter and controlled transition bridge converter offer the best solutions for high-voltage dc–dc converters that do not compromise galvanic isolation and prevention of dc fault propagation within the dc network. Apart from dc fault response, the MMC dc auto transformer and the transformerless hybrid cascaded two-level converter offer the most efficient solutions for tapping and dc voltage matching of multi-terminal HVDC networks.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 19. Boon-Teck, O.: ‘Feasibilty, stability, and voltage collapse in weak back-to-back HVDC links’, IEEE Trans. Power Deliv., 1986, 1, pp. 211217.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • 29. Wang, X., Boon-Teck, O.: ‘High voltage direct current transmission system based on voltage source converters’. 21st Annual IEEE Power Electronics Specialists Conf., 1990. PESC '90 Record, 1990, pp. 325332.
    30. 30)
      • 30. Weixing, L., Ooi, B.T.: ‘Multi-terminal LVDC system for optimal acquisition of power in wind-farm using induction generators’. 2001 IEEE 32nd Annual Power Electronics Specialists Conf., 2001. PESC, 2001, vol. 1, pp. 210215.
    31. 31)
      • 31. Weixing, L., Ooi, B.T.: ‘Simultaneous inter-area decoupling and local area damping by voltage source HVDC’. IEEE Power Engineering Society Winter Meeting, 2001.2001, vol. 3, pp. 10791084.
    32. 32)
    33. 33)
    34. 34)
    35. 35)
      • 35. Al Jowder, F., Ooi, B.T.: ‘VSC-HVDC station with SSSC characteristics’. 2003 IEEE 34th Annual Power Electronics Specialist Conf., 2003. PESC '03., 2003, vol. 4, pp. 17851791.
    36. 36)
      • 36. Asplund, G., Eriksson, K., Svenson, K.: ‘HVDC Light-DC Transmission Based on Voltage Sourced Converter [Online]’.
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
      • 44. Echeverria, J., Kouro, S., Perez, M., et al: ‘Multi-modular cascaded DC-DC converter for HVDC grid connection of large-scale photovoltaic power systems’. Industrial Electronics Society, IECON 2013 – 39th Annual Conf. of the IEEE, 2013, pp. 69997005.
    45. 45)
      • 45. Picas, R., Ceballos, S., Pou, J., et al: ‘Improving capacitor voltage ripples and power losses of modular multilevel converters through discontinuous modulation’. Industrial Electronics Society, IECON 2013 – 39th Annual Conf. of the IEEE, 2013, pp. 62336238.
    46. 46)
    47. 47)
      • 47. Häfner, J., Jacobson, B.: ‘Proactive hybrid HVDC breakers - a key innovation for reliable HVDC grids’. Cigre 2011, The Electric Power System of the Future-Integrating Supergrids and Microgrids International Symp., Bologna, 2011.
    48. 48)
      • 48. Davidson, C.C., de Preville, G.: ‘The future of high power electronics in Transmission and Distribution power systems’. 13th European Conf. on Power Electronics and Applications, 2009. EPE '09.2009, pp. 114.
    49. 49)
    50. 50)
    51. 51)
    52. 52)
      • 52. Jiebei, Z., Guerrero, J.M., Booth, C.D., et al: ‘A generic Inertia Emulation Controller for multi-terminal VSC-HVDC systems’. Renewable Power Generation Conf. (RPG 2013), 2nd IET, 2013, pp. 16.
    53. 53)
    54. 54)
      • 54. Lizana, R., Perez, M.A., Rodriguez, J., et al: ‘Modular multilevel converter machine drive using current source H-bridges’. Industrial Electronics Society, IECON 2013 – 39th Annual Conf. of the IEEE, 2013, pp. 62456250.
    55. 55)
    56. 56)
    57. 57)
    58. 58)
    59. 59)
    60. 60)
    61. 61)
    62. 62)
    63. 63)
    64. 64)
      • 64. Oates, C.: ‘Modular multilevel converter design for VSC HVDC applications’, IEEE J. Emerging Sel. Top. Power Electron., 2014, PP, pp. 11.
    65. 65)
      • 65. Soltau, N., Stagge, H., De Doncker, R.W., et al: ‘Development and demonstration of a medium-voltage high-power DC-DC converter for DC distribution systems’. 2014 IEEE 5th Int. Symp. on Power Electronics for Distributed Generation Systems (PEDG),, 2014, pp. 18.
    66. 66)
      • 66. Jovcic, D., Taherbaneh, M., Taisne, J.P., et al: ‘Developing regional, radial DC grids and their interconnection into large DC grids’. PES General Meeting Conf. and Exposition, 2014 IEEE, 2014, pp. 15.
    67. 67)
      • 67. Sano, K., Takasaki, M.: ‘A boost conversion system consisting of multiple DC-DC converter modules for interfacing wind farms and HVDC transmission’. 2013 IEEE Energy Conversion Congress and Exposition (ECCE), 2013, pp. 26132618.
    68. 68)
      • 68. Jian, W., Shen, Z., Dianguo, X.: ‘Modeling and control of multi-terminal HVDC with offshore wind farm integration and DC chopper based protection strategies’. Industrial Electronics Society, IECON 2013 – 39th Annual Conf. of the IEEE, 2013, pp. 10131018.
    69. 69)
      • 69. Mohammadpour, A., Parsa, L., Todorovic, M.H., et al: ‘Interleaved multi-phase ZCS isolated DC-DC converter for sub-sea power distribution’. Industrial Electronics Society, IECON 2013 – 39th Annual Conf. of the IEEE, 2013, pp. 924929.
    70. 70)
    71. 71)
    72. 72)
    73. 73)
      • 73. Mossadegh, N., Aggarwal, R.K.: ‘Management and viability of Multi-Terminal HVDC for offshore renewable energy networking’. 2010 45th Int. Universities Power Engineering Conference (UPEC), 2010, pp. 16.
    74. 74)
      • 74. Haileselassie, T.M., Uhlen, K.: ‘Primary frequency control of remote grids connected by multi-terminal HVDC’. 2010 IEEE Power and Energy Society General Meeting, 2010, pp. 16.
    75. 75)
    76. 76)
      • 76. De Doncker, R.W., Meyer, C., Lenke, R.U., et al: ‘Power electronics for future utility applications’. 7th Int. Conf. on Power Electronics and Drive Systems, 2007. PEDS '07.2007, pp. K-1K-8.
    77. 77)
    78. 78)
      • 78. Jacobson, B., Karlsson, P., Asplund, G., et al: ‘VSC-HVDC transmission with cascaded two-level converters’. CIGRE 2010, 2010.
    79. 79)
    80. 80)
    81. 81)
    82. 82)
      • 82. Jahns, T.M., De Doncker, R.W., Radun, A.V., et al: ‘System design considerations for a high-power aerospace resonant link converter’. Conf. Proc. 1992, Seventh Annual Applied Power Electronics Conf. and Exposition, 1992. APEC '92.1992, pp. 665673.
    83. 83)
      • 83. De Doncker, R.W., Demirci, O., Arthur, S., et al: ‘Characteristics of GTOs and high voltage MCTs in high power soft-switching converters’. Conf. Record of the 1991 IEEE Industry Applications Society Annual Meeting, 1991.1991, vol. 2, pp. 15391545.
    84. 84)
    85. 85)
      • 85. Steigerwald, R.L., De Doncker, R.W., Kheraluwala, M.H.: ‘A comparison of high power DC-to-DC soft-switched converter topologies’. Conf. Record of the 1994 IEEE Industry Applications Society Annual Meeting, 1994.1994, vol. 2, pp. 10901096.
    86. 86)
    87. 87)
      • 87. Adam, G., Davidson, I.: ‘Robust and generic control of full-bridge modular multilevel converter high-voltage DC transmission systems’, IEEE Trans. Power Deliv., 2015, PP, pp. 11.
    88. 88)
      • 88. Adam, G.P., Williams, B.W.: ‘Half and full-bridge modular multilevel converter models forsimulations of full-scale HVDC links and multi-terminal DC grids’, IEEE J. Emerging Sel. Top. Power Electron., 2014, PP, pp. 11.
    89. 89)
    90. 90)
      • 90. Adam, G.P., Finney, S.J., Williams, B.W., et al: ‘Two-level operation of a diode-clamped multilevel inverter’. 2010 IEEE Int. Symp. on Industrial Electronics (ISIE), 2010, pp. 11371142.
    91. 91)
    92. 92)
    93. 93)
      • 93. Adam, G.P., Finney, S.J., Williams, B.W.: ‘Quasi two-level operation of a five-level inverter’. Compatibility in Power Electronics, 2007. CPE '07, 2007, pp. 16.
    94. 94)
      • 94. Gowaid, I., Adam, G., Ahmed, S., et al: ‘Analysis and design of the modular quasi two-level converter for medium and high voltage dual active bridge DC-DC transformer applications’, IEEE Trans. Power Electron., 2014, PP, pp. 11.
    95. 95)
      • 95. Gowaid, I.A., Adam, G.P., Massoud, A.M., et al: ‘Quasi two-level operation of modular multilevel converter for use in a high-power DC transformer with DC fault isolation capability’, IEEE Trans. Power Electron., 2014, PP, pp. 11.
    96. 96)
      • 96. Xing, Z., Ruan, X., You, H., et al: ‘Soft-switching operation of isolated modular DC/DC converters for application in HVDC grids’, IEEE Trans. Power Electron., 2015, PP, pp. 11.
    97. 97)
      • 97. Oates, C., Dyke, K., Trainer, D.: ‘The use of trapezoid waveforms within converters for HVDC’. 2014 16th European Conf. on Power Electronics and Applications (EPE'14-ECCE Europe), 2014, pp. 110.
    98. 98)
    99. 99)
    100. 100)
      • 100. Gowaid, I.A., Adam, G.P., Williams, B.W., et al: ‘The transition arm multilevel converter- A concept for medium and high voltage DC-DC transformers’. 2015 IEEE Int. Conf. on Industrial Technology (ICIT), 2015, pp. 30993104.
    101. 101)
      • 101. Merlin, M.M.C., Green, T.C., Mitcheson, P.D., et al: ‘A new hybrid multi-level voltage-source converter with DC fault blocking capability’. IET ACDC2010, London, UK, 2010.
    102. 102)
      • 102. Adam, G.P., Finney, S.J., Williams, B.W., et al: ‘Network fault tolerant voltage-source-converters for high-voltage applications’. IET, the 9th Int. Conf. on AC and DC Power Transmission, London, UK, 2010.
    103. 103)
      • 103. Adam, G.P., Ahmed, K.H., Williams, B.W.: ‘Mixed cells modular multilevel converter’. 2014 IEEE 23rd Int. Symp. Industrial Electronics (ISIE), 2014, pp. 13901395.
    104. 104)
    105. 105)
    106. 106)
      • 106. Adam, G.P., Fionney, S.J., Williams, a.B.: ‘Network fault tolerent voltage source converters for high-voltage applications’. IET 9th Int. Conf. on AC and DC Power Transmission systems, London, UK, 2010.
    107. 107)
    108. 108)
      • 108. Hongfei, W., Yangjun, L., Tiantian, M., et al: ‘A family of soft-switching DC-DC converters based on a phase-shift-controlled active boost rectifier’, IEEE Trans. Power Electron., 2015, 30, pp. 657667.
    109. 109)
      • 109. Kheraluwala, M.H., De Doncker, R.W.: ‘Single phase unity power factor control for dual active bridge converter’. Conf. Record of the 1993 IEEE Industry Applications Society Annual Meeting, 1993.1993, vol. 2, pp. 909916.
    110. 110)
    111. 111)
      • 111. De Doncker, R.W., Lyons, J.P.: ‘The auxiliary quasi-resonant DC link inverter’. 22nd Annual IEEE Power Electronics Specialists Conf., 1991. PESC '91 Record.1991, pp. 248253.
    112. 112)
    113. 113)
    114. 114)
      • 114. Schon, A., Bakran, M.M.: ‘A new HVDC-DC converter with inherent fault clearing capability’. 2013 15th European Conf. on Power Electronics and Applications (EPE), 2013, pp. 110.
    115. 115)
      • 115. Kish, G.J., Lehn, P.W.: ‘A modular bidirectional DC power flow controller with fault blocking capability for DC networks’. 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL), 2013, pp. 17.
    116. 116)
      • 116. Kish, G.J., Lehn, P.W.: ‘A comparison of modular multilevel energy conversion processes: DC/AC versus DC/DC’. 2014 Int. Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE-ASIA), 2014, pp. 951958.
    117. 117)
    118. 118)
    119. 119)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2015.0530
Loading

Related content

content/journals/10.1049/iet-pel.2015.0530
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address