access icon free Zero voltage transition–zero current transition pulse-width modulated multiphase synchronous buck converter with an active auxiliary circuit for portable applications

In this study, a zero voltage transition (ZVT)–zero current transition (ZCT) pulse-width modulated (PWM) multiphase synchronous buck converter (SBC), with an active auxiliary circuit is proposed, that reduces the stresses and enhances the efficiency abating the switching and conduction losses of the converter. The important design feature of ZVT–ZCT PWM multiphase SBC converters is the placement of resonant components that pacifies the switching and conduction losses. Due to the ZVT–ZCT, the resonant components with low values are used that results in the increase of switching frequency. High current multiphase buck converters found applications in the advanced data control, solid state lasers, communication equipment, Pentium processors etc. The ZVT–ZCT operation of the proposed converter is presented through theoretical analysis. A simple design method for the auxiliary circuit is discussed. The characteristics of the proposed converter are verified with the simulation in the PSIM co-simulated with MATLAB/SIMULINK environment and validated with experimental results.

Inspec keywords: power electronics; PWM power convertors; circuit analysis computing

Other keywords: MATLAB environment; advanced data control; Pentium processors; conduction loss; ZVT-ZCT PWM multiphase SBC converters; active auxiliary circuit; zero voltage transition multiphase synchronous buck converter; pulse-width modulated multiphase synchronous buck converter; solid state lasers; SIMULINK environment; stress reduction; portable applications; efficiency enhancement; PSIM; switching loss; switching frequency; communication equipment; resonant components; zero current transition multiphase synchronous buck converter

Subjects: Electronic engineering computing; Power electronics, supply and supervisory circuits; Computer-aided circuit analysis and design

References

    1. 1)
    2. 2)
      • 13. Huang, W., Schuellein, G., Clavette, D.: ‘A scalable multiphase buck converter with average current share bus’. Proc. of IEEE APEC, 2003, pp. 438443.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 16. García, O., Zumel, P., Castro, A.: ‘Current self-balance sechanism in multiphase buck converter’. Application note..
    9. 9)
    10. 10)
    11. 11)
      • 17. Gu, W., Qiu, W., Wu, W.: ‘A multiphase DC/DC converter with hysteretic voltage control and current sharing’. Proc. of IEEE APEC, 2002, pp. 670674.
    12. 12)
    13. 13)
      • 6. Noon, J.P., Cho, B.H., Lee, F.C.: ‘Design of multi-module multiphase battery charger for the NASA EOS space platform test bed’. Proc. VPEC Annual Seminar, 1992, pp. 137142.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • 22. Qiu, Y.: ‘High-frequency modeling and analyses for buck and multiphase buck converters’. PhD dissertation, Blacksburg, Virginia, 2005.
    18. 18)
    19. 19)
      • 3. Cho, J.G., Cho, G.H.: ‘Novel off-line zero-voltage switching PWM ac/dc converter for direct conversion from ac line to 48 VDC bus with power factor correction’. Proc. IEEE PESC Record, 1993, pp. 689695.
    20. 20)
    21. 21)
    22. 22)
      • 2. Hua, G., Tabisz, W.A., Leu, C.S., et al: ‘Development of dc distributed power system components’. Proc. VPEC Annual Seminar, 1993, pp. 8796.
    23. 23)
    24. 24)
    25. 25)
      • 7. Hua, C., Tabisz, W.A., Leu, C.S., et al: ‘Development of DC distributed power system components’. Proc. VPEC Annual Seminar, 1992, pp. 137142.
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • 4. Cho, J.G., Sabaté, J., Lee, F.C.: ‘Novel zero-voltage-transition PWM dc/dc converter for high power applications’. Proc. IEEE APEC Record, 1994, pp. 143149.
    30. 30)
      • 18. Jakobsen, L.T., Garcia, O., Oliver, J.A., et al: ‘Interleaved buck converter with variable number of active phases and a predictive current sharing scheme’. Application note.
    31. 31)
      • 20. Nagaraja, H.N., Patra, A., Kastha, D.: ‘Design and analysis of four-phase synchronous buck converter for VRM applications’. Proc. of the IEEE INDICON, 2004.
    32. 32)
      • 5. Sable, D., Lee, F.C., Cho, B.H.: ‘A zero-voltage-switching bidirectional battery charger and discharger for the NASA EOS satellite’. Proc. VPEC Annual Seminar, 1992, pp. 4146.
    33. 33)
    34. 34)
      • 1. Hua, G., Leu, C.S., Lee, F.C.: ‘Novel zero voltage transition PWM converters’. Proc. IEEE PESC Record, 1992, pp. 5561.
    35. 35)
      • 8. Bedford, B.D., Hoft, R.G.: ‘Principles of inverter circuits’ (Wiley, New York, 1964).
    36. 36)
    37. 37)
      • 12. Zhou, X., Xu, P., Lee, F.C.: ‘A high power density, high frequency and fast transient voltage regulator module with a novel current sensing and current sharing technique’. Proc. of IEEE APEC, 1999, pp. 289294.
    38. 38)
    39. 39)
      • 11. Hegarty, T.: ‘Benefits of multi-phasing buck converters’, EE-Times India, November 2007.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2014.0905
Loading

Related content

content/journals/10.1049/iet-pel.2014.0905
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading