http://iet.metastore.ingenta.com
1887

Zero voltage transition–zero current transition pulse-width modulated multiphase synchronous buck converter with an active auxiliary circuit for portable applications

Zero voltage transition–zero current transition pulse-width modulated multiphase synchronous buck converter with an active auxiliary circuit for portable applications

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a zero voltage transition (ZVT)–zero current transition (ZCT) pulse-width modulated (PWM) multiphase synchronous buck converter (SBC), with an active auxiliary circuit is proposed, that reduces the stresses and enhances the efficiency abating the switching and conduction losses of the converter. The important design feature of ZVT–ZCT PWM multiphase SBC converters is the placement of resonant components that pacifies the switching and conduction losses. Due to the ZVT–ZCT, the resonant components with low values are used that results in the increase of switching frequency. High current multiphase buck converters found applications in the advanced data control, solid state lasers, communication equipment, Pentium processors etc. The ZVT–ZCT operation of the proposed converter is presented through theoretical analysis. A simple design method for the auxiliary circuit is discussed. The characteristics of the proposed converter are verified with the simulation in the PSIM co-simulated with MATLAB/SIMULINK environment and validated with experimental results.

References

    1. 1)
      • 1. Hua, G., Leu, C.S., Lee, F.C.: ‘Novel zero voltage transition PWM converters’. Proc. IEEE PESC Record, 1992, pp. 5561.
    2. 2)
      • 2. Hua, G., Tabisz, W.A., Leu, C.S., et al: ‘Development of dc distributed power system components’. Proc. VPEC Annual Seminar, 1993, pp. 8796.
    3. 3)
      • 3. Cho, J.G., Cho, G.H.: ‘Novel off-line zero-voltage switching PWM ac/dc converter for direct conversion from ac line to 48 VDC bus with power factor correction’. Proc. IEEE PESC Record, 1993, pp. 689695.
    4. 4)
      • 4. Cho, J.G., Sabaté, J., Lee, F.C.: ‘Novel zero-voltage-transition PWM dc/dc converter for high power applications’. Proc. IEEE APEC Record, 1994, pp. 143149.
    5. 5)
      • 5. Sable, D., Lee, F.C., Cho, B.H.: ‘A zero-voltage-switching bidirectional battery charger and discharger for the NASA EOS satellite’. Proc. VPEC Annual Seminar, 1992, pp. 4146.
    6. 6)
      • 6. Noon, J.P., Cho, B.H., Lee, F.C.: ‘Design of multi-module multiphase battery charger for the NASA EOS space platform test bed’. Proc. VPEC Annual Seminar, 1992, pp. 137142.
    7. 7)
      • 7. Hua, C., Tabisz, W.A., Leu, C.S., et al: ‘Development of DC distributed power system components’. Proc. VPEC Annual Seminar, 1992, pp. 137142.
    8. 8)
      • 8. Bedford, B.D., Hoft, R.G.: ‘Principles of inverter circuits’ (Wiley, New York, 1964).
    9. 9)
    10. 10)
    11. 11)
      • 11. Hegarty, T.: ‘Benefits of multi-phasing buck converters’, EE-Times India, November 2007.
    12. 12)
      • 12. Zhou, X., Xu, P., Lee, F.C.: ‘A high power density, high frequency and fast transient voltage regulator module with a novel current sensing and current sharing technique’. Proc. of IEEE APEC, 1999, pp. 289294.
    13. 13)
      • 13. Huang, W., Schuellein, G., Clavette, D.: ‘A scalable multiphase buck converter with average current share bus’. Proc. of IEEE APEC, 2003, pp. 438443.
    14. 14)
    15. 15)
    16. 16)
      • 16. García, O., Zumel, P., Castro, A.: ‘Current self-balance sechanism in multiphase buck converter’. Application note..
    17. 17)
      • 17. Gu, W., Qiu, W., Wu, W.: ‘A multiphase DC/DC converter with hysteretic voltage control and current sharing’. Proc. of IEEE APEC, 2002, pp. 670674.
    18. 18)
      • 18. Jakobsen, L.T., Garcia, O., Oliver, J.A., et al: ‘Interleaved buck converter with variable number of active phases and a predictive current sharing scheme’. Application note.
    19. 19)
    20. 20)
      • 20. Nagaraja, H.N., Patra, A., Kastha, D.: ‘Design and analysis of four-phase synchronous buck converter for VRM applications’. Proc. of the IEEE INDICON, 2004.
    21. 21)
    22. 22)
      • 22. Qiu, Y.: ‘High-frequency modeling and analyses for buck and multiphase buck converters’. PhD dissertation, Blacksburg, Virginia, 2005.
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2014.0905
Loading

Related content

content/journals/10.1049/iet-pel.2014.0905
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address