access icon free Implementation of phase disposition modulation method for the three-level diode-clamped matrix converter

To improve the input and output waveform quality in terms of total harmonic distortion (THD) for the three-level diode-clamped matrix converter topology, the phase disposition carrier-based modulation method is a good option. However, it is difficult to implement because of the loss of zero-current commutations. Aiming at addressing the problem above, a hybrid switching sequence for the phase disposition method is presented to realise the safe commutation, and a prediction-based method is used to alternate the switching sequences. The current direction information of the switches in cascaded rectifier for commutations is obtained by a current reconstruction method. As demonstrated by experimental results, the phase disposition method contributes to lower input and output waveforms THD values compared with the phase opposition disposition method.

Inspec keywords: matrix convertors; switching convertors; harmonic distortion

Other keywords: phase opposition disposition method; reconstruction method; hybrid switching sequence; phase disposition modulation method; zero-current commutation loss; three-level diode-clamped matrix converter topology; switch direction information; output waveform quality; cascaded rectifier; switching sequences; input waveform quality; THD; prediction-based method; commutation safety; total harmonic distortion; phase disposition carrier-based modulation method; lower-input-output waveform THD value

Subjects: AC-AC power convertors

References

    1. 1)
      • 5. Klug, R.D., Klaassen, N.: ‘High power medium voltage drives – innovations, portfolio, trends’. Proc. of European Conf. on Power Electronics and Applications, Dresden, Germany, 2005, pp. 110.
    2. 2)
      • 20. Raju, S., Srivatchan, L., Mohan, N.: ‘Direct space vector modulated three level matrix converter’. Proc. of IEEE Conf. on Applied Power Electronics Conf. and Exposition, CA, USA, March 2013, pp. 475481.
    3. 3)
      • 7. Franquelo, L.G., Rodriguez, J., Leon, J.I., et al: ‘The age of multilevel converters arrives’, IEEE Trans. Ind. Electron., 2008, 2, (2), pp. 2839.
    4. 4)
    5. 5)
      • 13. Wang, J.C., Wu, B., Xu, D.W., Zargari, N.R.: ‘Indirect space-vector-based modulation techniques for high-power multimodular matrix converters’, IEEE Trans. Ind. Electron., 2013, 60, (8), pp. 30603071.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 27. Holmes, D.G., Lipo, T.A.: ‘Pulse width modulation for power converters: principles and practice’ (IEEE Press, 2003).
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 16. Baumann, M., Stogerer, F., Kolar, J.W.: ‘Novel three-phase AC–DC–AC sparse matrix converter. Part II: experimental analysis of the very sparse matrix converter’. Proc. of IEEE Conf. on Applied Power Electronics Conf. and Exposition, Dallas, TX, March 2002, pp. 778781.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 30. Empringham, L., Wheeler, P., Clare, J.: ‘Intelligent commutation of matrix converter bi-directional switch cells using novel gate drive techniques’. Proc. of IEEE Conf. on Power Electronics and Specifications, Fukuoka, Japan, 1998, pp. 707713.
    26. 26)
      • 29. Burany, N.: ‘Safe control of four-quadrant switches’. Proc. of IEEE Conf. on Industry Application Society Annual Meeting, San Diego, CA, USA, 1989, pp. 11901194.
    27. 27)
      • 11. Change, J.: ‘Modular AC–AC variable voltage and variable frequency power converter system and control’. US Patent, 5909367, June1999.
    28. 28)
    29. 29)
    30. 30)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2014.0887
Loading

Related content

content/journals/10.1049/iet-pel.2014.0887
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading