Maximum power point tracking based on sliding-mode control for output-series connected converters in photovoltaic systems

Maximum power point tracking based on sliding-mode control for output-series connected converters in photovoltaic systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A perturb and observe algorithm based on both the power-current characteristic of a photovoltaic (PV) panel and the sliding-mode control of the input inductor current of an associated converter is investigated in a static application. A single ended primary inductance converter (SEPIC) converter charging a battery from a PV generator illustrates the procedure whose effectiveness is proved with experimental results. The reported technique is appropriate for distributed maximum power point tracking of PV systems with output series connected DC–DC switching converters. In these systems, each converter is supplied by an independent PV panel at the input port whereas its output port is connected in series with the output ports of the other converters. The proposed converter interconnection is based on a transformer-less SEPIC because of the capability of this converter to step-up or step-down the input voltage. The resulting system allows maximum power extraction from each PV source even in cases of non-uniform irradiance.


    1. 1)
      • 1. Kjaer, S.B., Pedersen, J.K., Blaabjerg, F.: ‘A review of single-phase grid-connected inverters for photovoltaic modules’, IEEE Trans. Ind. Appl., 2005, 41, (5), pp. 12921306 (doi: 10.1109/TIA.2005.853371).
    2. 2)
      • 2. Velasco-Quesada, G., Guinjoan-Gispert, F., Pique-Lopez, R., Roman-Lumbreras, M., Conesa-Roca, A.: ‘Electrical PV array reconfiguration strategy for energy extraction improvement in grid-connected PV systems’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 43194331 (doi: 10.1109/TIE.2009.2024664).
    3. 3)
      • 3. Walker, G.R., Sernia, P.C.: ‘Cascaded DC–DC converter connection of photovoltaic modules’, IEEE Trans. Power Electron., 2004, 19, (4), pp. 11301139 (doi: 10.1109/TPEL.2004.830090).
    4. 4)
      • 4. Petrone, G., Spagnuolo, G., Teodorescu, R., Veerachary, M.: ‘Reliability issues in photovoltaic power processing systems’, IEEE Trans. Ind. Electron., 2008, 55, (7), pp. 25692580 (doi: 10.1109/TIE.2008.924016).
    5. 5)
      • 5. Luo, S., Batarseh, I.: ‘A review of distributed power system. Part I: DC distributed power system’, IEEE Aerosp. Electron. Syst. Mag., 2006, 21, (6), pp. 514 (doi: 10.1109/MAES.2006.1662037).
    6. 6)
      • 6. Cid-Pastor, A., Martínez-Salamero, L., Leyva, R., Calvente, J., Giral, R.: ‘Design of photovoltaic-based current sources for maximum power transfer by means of power gyrators’, IET Power Electron., 2011, 4, (6), pp. 674682 (doi: 10.1049/iet-pel.2010.0190).
    7. 7)
      • 7. Ramon, E., Alonso, R., Ibanez, P., Elorduizapatarietxe, S., Goita, D.: ‘Intelligent PV module for grid-connected PV systems’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 10661073 (doi: 10.1109/TIE.2006.878327).
    8. 8)
      • 8. Walker, G.R., Pierce, J.C.: ‘Photovoltaic DC–DC module integrated converter for novel cascaded and bypass grid connection topologies – design and optimization’. Proc. 37th Annual Power Electronics Specialists Conf. (PESC'06), 2006, pp. 17.
    9. 9)
      • 9. Linares, L., Erickson, R.W., MacAlpine, S., Brandemuehl, M.: ‘Improved energy capture in series string photovoltaics via smart distributed power electronics’. Proc. 24th Annual Applied Power Electronics Conf. and Exposition (APEC'09), 2009, pp. 904910.
    10. 10)
      • 10. Adinolfi, G., Femia, N., Petrone, G., Spagnuolo, G.: ‘Design of DC/DC converters for DMPPT PV applications based on the concept of energetic efficiency’, J. Solar Energy Eng., 2010, 132, (2), pp. 021005/1021005-10 (doi: 10.1115/1.4001465).
    11. 11)
      • 11. Graditi, G., Adinolfi, G., Femia, N., Vitelli, M.: ‘Comparative analysis of synchronous rectification boost and diode rectification boost converter for DMPPT applications’. IEEE Proc. Int. Symp. Industrial Electronics (ISIE 2011), Gdansk, Poland, 27–30 June 2011, pp. 10001005.
    12. 12)
      • 12. Bratcu, A.I., Munteanu, I., Bacha, S., Picault, D., Raison, B.: ‘Power optimization strategy for cascaded DC–DC converter architectures of photovoltaic modules’. IEEE Proc. Int. Conf. Industrial Technology (ICIT'09), 2009, pp. 18.
    13. 13)
      • 13. Tsao, P., Sarhan, S., Jorio, I.: ‘Distributed max power point tracking for photovoltaic arrays’. IEEE Proc. 34th Annual Photovoltaic Specialists Conf. (PVSC'09), 2009, pp. 22932298.
    14. 14)
      • 14. Alonso, R., Ibanez, P., Martinez, V., Roman, E., Sanz, A.: ‘Analysis of performance of new distributed MPPT architectures’. IEEE Proc. Int. Symp. Industrial Electronics (ISIE'10), 2010, pp. 34503455.
    15. 15)
      • 15. Nimni, Y., Shmilovitz, D.: ‘A returned energy architecture for improved photovoltaic system efficiency’. IEEE Proc. Int. Symp. Circuits and Systems (ISCAS'10), 2010, pp. 21912194.
    16. 16)
      • 16. Giral, R., Ramos-Paja, C.A., Gonzalez, D., Calvente, J., Cid-Pastor, A., Martinez-Salamero, L.: ‘Minimizing the effects of shadowing in a PV module by means of active voltage sharing’. IEEE Proc. Int. Conf. Industrial Technology (ICIT'10), 2010, pp. 943948.
    17. 17)
      • 17. Femia, N., Lisi, G., Petrone, G., Spagnuolo, G., Vitelli, M.: ‘Distributed maximum power point tracking of photovoltaic arrays: novel approach and system analysis’, IEEE Trans. Ind. Electron., 2008, 55, (7), pp. 26102621 (doi: 10.1109/TIE.2008.924035).
    18. 18)
      • 18. Zhang, Z., Djabbari, A., Lisi, G.: ‘Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system’, United States Patent, Patent no: US 7,991,511 B2. Date of patent: August 2, 2011.
    19. 19)
      • 19. Petrone, G., Spagnuolo, G., Vitelli, M.: ‘Distributed maximum power point tracking: challenges and commercial solutions’, Automatika, 2012, 53, (2), Special Issue on DC-DC Conversion and Active Rectifying, pp. 128141.
    20. 20)
      • 20., redirected to, accessed July 2013.
    21. 21)
      • 21., accessed July 2013.
    22. 22)
      • 22., accessed July 2013.
    23. 23)
      • 23. Massey, R.P., Snyder, E.C.: ‘High voltage single-ended DC–DC converter’. Proc. Power Electronics Specialists Conf. (PESC'97), 1977, pp. 156159.
    24. 24)
      • 24. Erickson, R.W., Maksimovic, D.: ‘Fundamentals of power electronics’ (Kluwer Academic Publishers, 2001, 2nd edn.).
    25. 25)
      • 25. Utkin, V., Guldner, J., Shi, J.: ‘Sliding mode control in electro-mechanical systems’ (CRC Press, 2009, 2nd edn.).
    26. 26)
      • 26. Sira-Ramirez, H.: ‘Sliding motions in bilinear switched networks’, IEEE Trans. Circuits Syst., 1987, 34, (8), pp. 919933 (doi: 10.1109/TCS.1987.1086242).
    27. 27)
      • 27. López-Santos, O., Martínez-Salamero, L., García, G., Valderrama-Blavi, H., Mercuri, D.O.: ‘Efficiency analysis of a sliding-mode controlled quadratic boost converter’, IET Power Electron., 2013, 6, (2), pp. 364373 (doi: 10.1049/iet-pel.2012.0417).
    28. 28)
      • 28. Tan, S.C., Lai, Y.M., Tse, C.K.: ‘General design issues of sliding-mode controllers in DC–DC converters’, IEEE Trans. Ind. Electron., 2008, 55, (3), pp. 11601174 (doi: 10.1109/TIE.2007.909058).
    29. 29)
      • 29. Levron, Y., Shmilovitz, D.: ‘Maximum power point tracking employing sliding-mode control’, IEEE Trans. Circuits Syst. (I), 2013, 60, (3), pp. 724731 (doi: 10.1109/TCSI.2012.2215760).
    30. 30)
      • 30. El Basri, Y., Petibon, S., Estibals, B., Alonso, C.: ‘New P&O MPPT algorithm for FPGA implementation’. Proc. 36th Annual Conf. IEEE Industrial Electronics (IECON), 2010, pp. 28682873.
    31. 31)
      • 31. Singer, S.: ‘Realization of loss-free resistive elements’, IEEE Trans. Circuits Syst., 1990, 37, (1), pp. 5460 (doi: 10.1109/31.45691).
    32. 32)
      • 32. Singer, S.: ‘The application of loss-free resistors in power processing circuits’, IEEE Trans. Power Electron., 1991, 6, (4), pp. 595600 (doi: 10.1109/63.97757).
    33. 33)
      • 33. Singer, S., Erickson, R.W.: ‘Canonical modeling of power processing circuits based on the POPI concept’, IEEE Trans. Power Electron., 1991, 7, (1), pp. 3743 (doi: 10.1109/63.124575).

Related content

This is a required field
Please enter a valid email address