Your browser does not support JavaScript!

Switching strategy for six switches forced commutated cycloconverter with several advantages

Switching strategy for six switches forced commutated cycloconverter with several advantages

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Forced commutated cycloconverters (FCCs) are very popular topics today which can generate variable frequency and variable voltage in output. These converters include six switches in each phase where operation of these converters depends on switching strategy. This study describes a novel switching strategy for six switches FCC where this strategy transfers seven input voltages to FCC output. In each switching period, among seven input voltages, there are only two input voltages which surround reference output voltage. Hence, the proposed strategy makes these two input voltages around reference voltage transfer to FCC output in each switching period. As a result, average value of FCC output voltage is the same as reference voltage. Main benefits of this switching strategy are minimisation of total harmonic distortion, reduction of dv/dt stresses on the load, lower harmonic components, high-voltage modulation index and performance in unbalance or non-sinusoidal input voltage condition. The operation and performance of the proposed switching strategy has been verified by the simulation and measurement results which were carried out for three-phase to single-phase converter. The proposed switching strategy serves as the conceptual platform for extending the principles to other FCC topologies.


    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 12. Casadei, D., Serra, G., Tani, A., Zarri, L.: ‘Matrix converter modulation strategies: a new general approach based on space-vector representation of the switch state’, IEEE Trans. Ind. Appl., 2002, 49, (2), pp. 370381.
    15. 15)
    16. 16)
      • 11. Huber, L., Borojevic, D.: ‘Space vector modulated three-phase to three-phase matrix converter with input power factor correction’, IEEE Trans. Ind. Appl., 1995, 31, (6), pp. 12341246 (doi: 10.1109/28.475693).
    17. 17)
      • 7. Kouro, S., Cortes, P., Vargas, R., Ammann, U., Rodriguez, J.: ‘Model predictive control, a simple and powerful method to control power converters’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 18261838 (doi: 10.1109/TIE.2008.2008349).
    18. 18)
      • 12. Casadei, D., Serra, G., Tani, A., Zarri, L.: ‘Matrix converter modulation strategies: a new general approach based on space-vector representation of the switch state’, IEEE Trans. Ind. Appl., 2002, 49, (2), pp. 370381.
    19. 19)
      • 19. Ponnaluri, B.S., Teichmann, R.: ‘Design and loss comparison of matrix converters and voltage-source converters for modern AC drives’, IEEE Trans. Ind. Electron., 2002, 49, (2), pp. 304314 (doi: 10.1109/41.993263).
    20. 20)
      • 20. Wang, D., Mao, C., Lu, J., Fan, S., Peng, F.: ‘Theory and application of distribution electronic power transformer’, Electr. Power Syst. Res. J., 2007, 77, (3–4), pp. 219226 (doi: 10.1016/j.epsr.2006.02.012).
    21. 21)
      • 8. Alesina, A., Venturini, M.: ‘Solid-state power conversion: a Fourier analysis approach to generalized transformer synthesis’, IEEE Trans. Circuits Syst., 1981, 28, (CS-4), pp. 319330 (doi: 10.1109/TCS.1981.1084993).
    22. 22)
      • 4. Loh, P., Rong, R., Blaabjerg, F., Shan, L., Wang, P.: ‘Carrier-based modulation schemes for various three-level matrix converters’. Proc. IEEE Power Electronics Specialist Conf., June 2008, pp. 17201726.
    23. 23)
      • 22. Ishiguro, A., Furuhashi, T., Okuma, S.: ‘A novel control method for forced commutated cycloconverters using instantaneous values of input line-to-line voltages’, IEEE Trans. Ind. Electron., 1991, 38, (3), pp. 166171 (doi: 10.1109/41.87583).
    24. 24)
      • 24. Cook, J.D., Halpin, M., Nelms, M.: ‘Digital control of a three-phase to single-phase cycloconverter motor drive’. Proc. Second Int. Energy Conversion Engineering Conf., Providence, Rhode Island, 2001.
    25. 25)
      • 10. Roy, G., April, G.-E.: ‘Cycloconverter operation under a new scalar control algorithm’, Proc. 20th Annual IEEE Power Electronics Specialist Conf., 1989, 1, pp. 368375.
    26. 26)
      • 16. Ortega, C., Arias, A., Caruana, C., Balcells, J., Asher, G.: ‘Improved waveform quality in the direct torque control of matrix-converter-fed PMSM drives’, IEEE Trans. Ind. Electron., 2010, 57, (6), pp. 21012110 (doi: 10.1109/TIE.2009.2033084).
    27. 27)
      • 9. Alesina, A., Venturini, M.: ‘Analysis and design of optimum amplitude nine-switch direct AC-AC converters’, IEEE Trans. Power Electron., 1989, PE-4, (1), pp. 101112 (doi: 10.1109/63.21879).
    28. 28)
      • 6. Xiao, D., Rahman, F.: ‘A modified DTC for matrix converter drives using two switching configurations’. Proc. 13th EPE, September 2009, pp. 110.
    29. 29)
      • 23. Karaca, H., Akkaya, R.: ‘Modelling and simulation of matrix converter underdistorted input voltage conditions’, Simul. Model. Pract. Theory, 2011, 19, (2), pp. 673684 (doi: 10.1016/j.simpat.2010.09.005).
    30. 30)
      • 18. Tang, Y., Zhang, C., Xie, S.: ‘Single-phase four switches z-source ac-ac converters’. Proc. IEEE Appllications Power Electronics Conf., 2007, pp. 621625.
    31. 31)
      • 3. Mei, Y., Huang, L.: ‘Improved switching function modulation strategy for three-phase to single-phase matrix converter’. Proc. IEEE IPEMC, May 2009, pp. 17341737.
    32. 32)
      • 1. Venturini, M.: ‘A new sine wave in sine wave out conversion technique which eliminates reactive elements’, Proc. Powerconvers., 1980, 7, pp. E3-1E3-15.
    33. 33)
      • 15. Li, Y., Choi, N.-S., Han, B.-M., Kim, K.M., Lee, B., Park, J.-H.: ‘Direct duty ratio pulse width modulation method for matrix converters’, Int. J. Control Autom. Syst., 2008, 6, (5), pp. 660669.
    34. 34)
      • 2. Lopez Arevalo, S., Zanchetta, P., Wheeler, P., Trentin, A., Empringham, L.: ‘Control and implementation of a matrix-converter based AC-ground power-supply unit for aircraft servicing’, IEEE Trans. Ind. Electron., 2010, 57, (6), pp. 20762084 (doi: 10.1109/TIE.2009.2034180).
    35. 35)
      • 13. Casadei, D., Serra, G., Tani, A.: ‘Reduction of the input current harmonic content in matrix converters under input/output unbalance’, IEEE Trans. Ind. Electron., 1998, 45, pp. 401411 (doi: 10.1109/41.678998).
    36. 36)
      • 14. Yoon, Y.-D., Sul, S.-K.: ‘Carrier-based modulation technique for matrix converter’, IEEE Trans. Power Electron., 2006, 21, (6), pp. 16911703 (doi: 10.1109/TPEL.2006.882935).
    37. 37)
      • 5. Thuta, S., Mohapatra, K., Mohan, N.: ‘Matrix converter over-modulation using carrier-based control: maximizing the voltage transfer ratio’. Proc. IEEE Power Electronics Specialist Conf., June 2008, pp. 17271733.
    38. 38)
      • 21. Ziogas, P.D., Khan, S.I., Rashid, M.H.: ‘Analysis and design of forced commutated cycloconverter structures with improved transfer characteristics’, IEEE Trans. Ind. Electron., 1986, 1E-33, pp. 271280 (doi: 10.1109/TIE.1986.350233).
    39. 39)
      • 17. Fang, X.P., Qian, Z.M., Peng, F.Z.: ‘Single-phase z-source pwm ac-ac converters’, IEEE Power Electron. Lett., 2005, 3, (4), pp. 121124 (doi: 10.1109/LPEL.2005.860453).

Related content

This is a required field
Please enter a valid email address