Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Real and reactive power control of hybrid excited wind-driven grid-connected doubly fed induction generators

This study proposes a simple topology which consists of a single sinusoidal pulse width modulation (SPWM) inverter and battery banks with wind-driven doubly fed induction generators (DFIGs) to dispatch a controllable power to the grid. The excitation of the rotor is established using an SPWM inverter supplied through a set of batteries with the stator connected to the grid. The proposed system supplies the desired real and reactive power to the grid by appropriately charging/discharging the batteries depending on excess/deficit power from the wind. A closed-loop controller has been developed for this purpose which involves varying the rotor voltage magnitude and frequency. The entire control strategy proposed in this study has been implemented using TMS320LF2407A DSP controller and detailed procedure for such implementation is presented. The steady-state analysis and phasor diagram representation of the system have been developed and presented. Experimental results obtained on a three-phase, four-pole, 50 Hz, 5 kVA DFIG together with the closed-loop controller under steady-state and dynamic operating conditions, confirm the usefulness of the proposed system. The experimental results have been compared with predicted values and a very close agreement between the two is observed.

References

    1. 1)
      • 39. Arbi, J., Ghorbal, M.J.B., Slama-Belkhodja, I., Charaabi, L.: ‘Direct virtual torque control for doubly fed induction generator grid connection’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 41634173 (doi: 10.1109/TIE.2009.2021590).
    2. 2)
      • 5. Bansal, R.C., Bhatti, T.S., Kothari, D.P.: ‘Bibliography on the application of induction generators in nonconventional energy systems’, IEEE Trans. Energy Convers., 2003, 18, (3), pp. 433439 (doi: 10.1109/TEC.2003.815856).
    3. 3)
      • 28. Wang, Z., Chang, L.: ‘A DC voltage monitoring and control method for three-phase grid-connected wind turbine inverters’, IEEE Trans. Power Electron., 2008, 23, (3), pp. 11181125 (doi: 10.1109/TPEL.2008.921174).
    4. 4)
      • 33. Vijayakumar, K., Kumaresan, N., Ammasai Gounden, N.: ‘Operation and closed-loop control of wind-driven stand-alone doubly fed induction generators using a single inverter-battery system’, IET Electr. Power Appl., 2012, 6, (3), pp. 162171 (doi: 10.1049/iet-epa.2011.0204).
    5. 5)
      • 15. Lu, M.-S., Chang, C.-L., Lee, W.-J., Wang, L.: ‘Combining the wind power generation system with energy storage equipment’, IEEE Trans. Ind. Appl., 2009, 45, (6), pp. 21092115 (doi: 10.1109/TIA.2009.2031937).
    6. 6)
      • 8. Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., et al.: ‘Power-electronic systems for the grid integration of renewable energy sources: a survey’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 10021016 (doi: 10.1109/TIE.2006.878356).
    7. 7)
      • 35. Datta, R., Ranganathan, V.T.: ‘A simple position-sensorless algorithm for rotor-side field-oriented control of wound-rotor induction machine’, IEEE Trans. Ind. Electron., 2001, 48, (4), pp. 786793 (doi: 10.1109/41.937411).
    8. 8)
      • 32. Escobar, G., Stankovic, A.M., Mattavelli, P.: ‘An adaptive controller in stationary reference frame for D-statcom in unbalanced operation’, IEEE Trans. Ind. Electron., 2004, 51, (2), pp. 401409 (doi: 10.1109/TIE.2004.825270).
    9. 9)
      • 19. Teleke, S., Baran, M.E., Huang, A.Q., Bhattacharya, S., Anderson, L.: ‘Control strategies for battery energy storage for wind farm dispatching’, IEEE Trans. Energy Convers., 2009, 24, (3), pp. 725732 (doi: 10.1109/TEC.2009.2016000).
    10. 10)
      • 13. Chen, Z., Spooner, E.: ‘Grid power quality with variable speed wind turbines’, IEEE Trans. Energy Convers., 2001, 16, (2), pp. 148154 (doi: 10.1109/60.921466).
    11. 11)
      • 38. Jain, A.K., Ranganathan, V.T.: ‘Wound rotor induction generator with sensorless control and integrated active filter for feeding nonlinear loads in a stand-alone grid’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 218228 (doi: 10.1109/TIE.2007.911196).
    12. 12)
      • 41. Hughes, F.M., Lara, O.A., Jenkins, N., Strbac, G.: ‘A power system stabilizer for DFIG-based wind generation’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 763772 (doi: 10.1109/TPWRS.2006.873037).
    13. 13)
      • 7. Li, H., Chen, Z.: ‘Overview of different wind generator systems and their comparisons’, IET Renew. Power Gener., 2008, 2, (2), pp. 123138 (doi: 10.1049/iet-rpg:20070044).
    14. 14)
      • 29. Kazmierkowski, M.P., Malesani, L.: ‘Current control techniques for three-phase voltage-source PWM converters: a survey’, IEEE Trans. Ind. Electron., 1998, 45, (5), pp. 691703 (doi: 10.1109/41.720325).
    15. 15)
      • 14. Kanellos, F.D., Hatziargyriou, N.D.: ‘The effect of variable-speed wind turbines on the operation of weak distribution networks’, IEEE Trans. Energy Convers., 2002, 17, (4), pp. 543548 (doi: 10.1109/TEC.2002.805224).
    16. 16)
      • 37. Pena, R., Cardenas, R., Proboste, J., Asher, G., Clare, J.: ‘Sensorless control of doubly-fed induction generators using a rotor-current-based MRAS observer’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 330339 (doi: 10.1109/TIE.2007.896299).
    17. 17)
      • 30. Yang, S., Lei, Q., Peng, F.Z., Qian, Z.: ‘A robust control scheme for grid-connected voltage-source inverters’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 202212 (doi: 10.1109/TIE.2010.2045998).
    18. 18)
      • 21. Wang, L., Yu, J.Y., Chen, Y.T.: ‘Dynamic stability improvement of an integrated offshore wind and marine-current farm using a flywheel energy-storage system’, IET Renew. Power Gener., 2011, 5, (5), pp. 387396 (doi: 10.1049/iet-rpg.2010.0194).
    19. 19)
      • 1. Barroso, L.A., Rudrick, H., Sensfuss, F., Linares, P.: ‘The green effect’, IEEE Power Energy Mag., 2010, 8, (5), pp. 2235 (doi: 10.1109/MPE.2010.937595).
    20. 20)
      • 2. Habash, R.W.Y., Guillemette, P.: ‘Harnessing the winds: trends and advances’, IEEE Potentials, 2012, 31, (1), pp. 1621 (doi: 10.1109/MPOT.2011.942838).
    21. 21)
      • 6. Ekanayake, J., Jenkins, N.: ‘Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency’, IEEE Trans. Energy Convers., 2004, 19, (4), pp. 800802 (doi: 10.1109/TEC.2004.827712).
    22. 22)
      • 4. Cecati, C., Citro, C., Siano, P.: ‘Combined operations of renewable energy systems and responsive demand in a smart grid’, IEEE Trans. Sustain. Energy, 2011, 2, (4), pp. 468476 (doi: 10.1109/TSTE.2011.2161624).
    23. 23)
      • 12. Muller, S., Deicke, M., De Doncker, R.W.: ‘Doubly fed induction generator systems for wind turbines’, IEEE Trans. Ind. Appl. Mag., 2002, 8, (3), pp. 2633 (doi: 10.1109/2943.999610).
    24. 24)
      • 18. Yao, D.L., Choi, S.S., Tseng, K.J., Lie, T.T.: ‘A statistical approach to the design of a dispatchable wind power-battery energy storage system’, IEEE Trans. Energy Convers., 2009, 24, (4), pp. 916925 (doi: 10.1109/TEC.2009.2025331).
    25. 25)
      • 36. Iwanski, G., Koczara, W.: ‘DFIG-based power generation system with UPS function for variable-speed applications’, IEEE Trans. Ind. Electron., 2008, 55, (8), pp. 30473054 (doi: 10.1109/TIE.2008.918473).
    26. 26)
      • 25. Gyawali, N., Ohsawa, Y., Yamamoto, O.: ‘Power management of double-fed induction generator-based wind power system with integrated smart energy storage having superconducting magnetic energy storage/fuel-cell/electrolyser’, IET Renew. Power Gener., 2011, 5, (6), pp. 407421 (doi: 10.1049/iet-rpg.2010.0058).
    27. 27)
      • 10. Smith, A.C., Todd, R., Barnes, M., Tavner, P.J.: ‘Improved energy conversion for doubly fed wind generators’, IEEE Trans. Ind. Appl., 2006, 42, (6), pp. 14211428 (doi: 10.1109/TIA.2006.882640).
    28. 28)
      • 3. Cailliau, M., Foresti, M., Martinez Villar, C.: ‘Winds of change’, IEEE Power Energy Mag., 2010, 8, (5), pp. 5362 (doi: 10.1109/MPE.2010.937596).
    29. 29)
      • 34. Vijayakumar, K., Kumaresan, N., Ammasai Gounden, N.: ‘Operation of inverter assisted wind-driven slip ring induction generator for stand-alone power supplies’, IET Electr. Power Appl., doi 10:1049/iet-epa.2012.0139.
    30. 30)
      • 31. Luo, A., Tang, C., Shuai, Z., Tang, J., Yong Xu, X., Chen, D.: ‘Fuzzy-PI-based direct-output-voltage control strategy for the STATCOM used in utility distribution systems’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 24012411 (doi: 10.1109/TIE.2009.2021172).
    31. 31)
      • 20. Mathiesen, B.V., Lund, H.: ‘Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources’, IET Renew. Power Gener., 2009, 3, (2), pp. 190204 (doi: 10.1049/iet-rpg:20080049).
    32. 32)
      • 22. Abbey, C., Joos, G.: ‘Super capacitor energy storage for wind energy applications’, IEEE Trans. Ind. Appl., 2007, 43, (3), pp. 769776 (doi: 10.1109/TIA.2007.895768).
    33. 33)
      • 9. Chen, Z., Guerrero, J.M., Blaabjerg, F.: ‘A review of the state of the art of power electronics for wind turbines’, IEEE Trans. Power Electron., 2009, 24, (8), pp. 18591875 (doi: 10.1109/TPEL.2009.2017082).
    34. 34)
      • 40. Wong, K.C., Ho, S.L., Cheng, K.W.E.: ‘Direct control algorithm for doubly fed induction generators in weak grids’, IET Electr. Power Appl., 2009, 3, (4), pp. 371380 (doi: 10.1049/iet-epa.2008.0039).
    35. 35)
      • 11. Tazil, M., Kumar, V., Bansal, R.C., et al.: ‘Three-phase doubly fed induction generators: an overview’, IET Electr. Power Appl., 2010, 4, (2), pp. 7589 (doi: 10.1049/iet-epa.2009.0071).
    36. 36)
      • 16. Zhou, T., Francois, B.: ‘Energy management and power control of a hybrid active wind generator for distributed power generation and grid integration’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 95104 (doi: 10.1109/TIE.2010.2046580).
    37. 37)
      • 17. Bhuiyan, F.A., Yazdani, A.: ‘Reliability assessment of a wind-power system with integrated energy storage’, IET Renew. Power Gener., 2010, 4, (3), pp. 211220 (doi: 10.1049/iet-rpg.2009.0070).
    38. 38)
      • 24. Shi, J., Tang, Y., Xia, Y., Ren, L., Li, J.: ‘SMES based excitation system for doubly-fed induction generator in wind power application’, IEEE Trans. Appl. Supercond., 2011, 21, (3), pp. 11051108 (doi: 10.1109/TASC.2011.2105450).
    39. 39)
      • 27. Bhattacharya, T., Umanand, L.: ‘Negative sequence compensation within fundamental positive sequence reference frame for a stiff micro-grid generation in a wind power system using slip ring induction machine’, IET Electr. Power Appl., 2009, 3, (6), pp. 520530 (doi: 10.1049/iet-epa.2008.0245).
    40. 40)
      • 26. Yang, T.C.: ‘Initial study of using rechargeable batteries in wind power generation with variable speed induction generators’, IET Renew. Power Gener., 2008, 2, (2), pp. 89101 (doi: 10.1049/iet-rpg:20070008).
    41. 41)
      • 23. Qu, L., Qiao, W.: ‘Constant power control of DFIG wind turbines with supercapacitor energy storage’, IEEE Trans. Ind. Appl., 2011, 47, (1), pp. 359367 (doi: 10.1109/TIA.2010.2090932).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0709
Loading

Related content

content/journals/10.1049/iet-pel.2012.0709
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address