access icon free Power flow control of intertied ac microgrids

Microgrids are small reliable grids formed by clustering distributed sources and loads together. They can, in principle, operate at different voltages and frequencies like 50, 60, 400 Hz or even dc. Tying them together or to the mains grid for energy sharing would therefore require the insertion of interlinking power converters. Active and reactive power flows of these converters should preferably be managed autonomously without demanding for fast communication links. A scheme that can fulfill the objectives is now proposed, which upon realised, will result in more robustly integrated microgrids with higher efficiency and lower reserve requirement. The scheme presented has been tested in experiments with results captured and discussed in a later section.

Inspec keywords: reactive power control; power convertors; distributed power generation; load flow control

Other keywords: power flow control; energy sharing; reactive power flows; intertied ac microgrids; active power flows; distributed sources clustering; interlinking power converters

Subjects: Power convertors and power supplies to apparatus; Distributed power generation; Power and energy control; Power system control; Control of electric power systems

References

    1. 1)
      • 13. Majumder, R., Ghosh, A., Ledwich, G., Zare, F.: ‘Power management and power flow control with back-to-back converters in a utility connected microgrid’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 821834 (doi: 10.1109/TPWRS.2009.2034666).
    2. 2)
      • 15. Bala, S., Venkataramanan, G.: ‘Autonomous power electronic interfaces between microgrids’. IEEE Energy Conversion Congress and Exposition, San Jose (USA), 2009, pp. 30063013.
    3. 3)
      • 16. Jaleeli, N., VanSlyck, L.S., Ewart, D.N., Fink, L.H., Hoffmann, A.G.: ‘Understanding automatic generation control’, IEEE Trans. Power Syst., 1992, 7, (3), pp. 11061122 (doi: 10.1109/59.207324).
    4. 4)
      • 14. Bala, S.: ‘Integration of single-phase microgrids’. PhD thesis, University of Wisconsin-Madison, 2008..
    5. 5)
      • 4. Katiraei, F., Iravani, R., Hatziargyriou, N., Dimeas, A.: ‘Microgrids management’, IEEE Power Energy Mag., 2008, 6, (3), pp. 5465 (doi: 10.1109/MPE.2008.918702).
    6. 6)
      • 5. Kwasinski, A.: ‘Advanced power electronics enabled distribution architectures: design, operation, and control’, Proc. Power Electronics and ECCE Asia (ICPE & ECCE), 2011, pp. 14841491.
    7. 7)
      • 17. Kim, J., Guerrero, J.M., Rodriguez, P., Teodorescu, R., Nam, K.: ‘Mode adaptive droop control with virtual output impedances for an inverter-based flexible ac microgrid’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 689701 (doi: 10.1109/TPEL.2010.2091685).
    8. 8)
      • 7. ABB.: ‘Shore-to-ship power: an effective solution for port emissions reduction’, ABB Report, July2011.
    9. 9)
      • 8. Karl, J.: ‘Shore-side electricity for ships in ports: case studies with estimates of internal and external costs prepared for the North Sea Commission’, Report, July2004.
    10. 10)
      • 1. Amin, S.M., Wollenberg, B.F.: ‘Toward a smart grid: power delivery for the 21st century’, IEEE Power Energy Mag., 2005, 3, (5), pp. 3441 (doi: 10.1109/MPAE.2005.1507024).
    11. 11)
      • 9. Blaabjerg, F., Chen, Z., Kjaer, S.B.: ‘Power electronics as efficient interface in dispersed power generation systems’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 11841194 (doi: 10.1109/TPEL.2004.833453).
    12. 12)
      • 11. Yu, X., Khambadkone, A.M., Wang, H., Terence, S.: ‘Control of parallel-connected power converters for low-voltage microgrid—Part I: a hybrid control architecture’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 29622970 (doi: 10.1109/TPEL.2010.2087393).
    13. 13)
      • 6. Emadi, A., Williamson, S.S., Khaligh, A.: ‘Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems’, IEEE Trans. Power Electron., 2006, 21, (3), pp. 567577 (doi: 10.1109/TPEL.2006.872378).
    14. 14)
      • 19. Lee, C.T., Chu, C.C., Cheng, P.T.: ‘A new droop control method for the autonomous operation of distributed energy resource interface converters’. IEEE Energy Conversion Congress and Exposition, Atlanta (USA), 2010, pp. 702709.
    15. 15)
      • 2. Garrity, T.F.: ‘Innovation and trends for future electric power systems’. Power Systems Conf-PSC ’09, 2009, pp. 18.
    16. 16)
      • 18. Mohamed, Y., El-Saadany, E.F.: ‘Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 28062816 (doi: 10.1109/TPEL.2008.2005100).
    17. 17)
      • 10. Rocabert, J., Luna, A., Blaabjerg, F., Rodríguez, P.: ‘Control of power converters in ac microgrids’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 47344749 (doi: 10.1109/TPEL.2012.2199334).
    18. 18)
      • 20. Divshali, P.H., Alimardani, A., Hosseinian, S.H., Abedi, M.: ‘Decentralized cooperative control strategy of microsources for stabilizing autonomous VSC-based microgrids’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 19491959 (doi: 10.1109/TPWRS.2012.2188914).
    19. 19)
      • 12. Guerrero, J.M.: ‘Guest editorial: ‘Special issue on power electronics for microgrids—Part I’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 28852888 (doi: 10.1109/TPEL.2010.2090072).
    20. 20)
      • 3. Lasseter, R.H.: ‘Smart distribution: coupled microgrids’, Proc. IEEE, 2011, 99, (6), pp. 10741082 (doi: 10.1109/JPROC.2011.2114630).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0640
Loading

Related content

content/journals/10.1049/iet-pel.2012.0640
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading