access icon free μ-based robust controller design of LCLC resonant inverter for high-frequency power distribution system

High-frequency AC (HFAC) power distribution system (PDS) has recently received more and more attentions and has a broad application from electric vehicle to Micro-grid. The resonant inverter is commonly used to provide the fixed frequency output for point of load (POL). However, the control and implementation of high-frequency resonant inverter is complicated to provide good steady and dynamic performance, because of the worse operating circumstance from parameter uncertainties, inaccuracy model, as well as load and line perturbations. Although H robust controller has already been widely examined, the feedback voltage controller designed by μ-synthesis accurately provides more effective analysis and design framework to achieve robust stability and robust tracking performance. In this study, the perturbations and control target are analysed to construct the unstructured and structured uncertainties for resonant inverter. A new μ-based controller is designed by μ-synthesis to testify its tracking performance under the given perturbations, and the robust performance of proposed controller is theoretically evaluated by μ-analysis. The prototype of simulation and experiment are implemented with a rated output power of 120 W and operation frequency of 25 kHz. The results prove its superiority over traditional PI and H controllers for HFAC power source constructed by LCLC resonant inverter.

Inspec keywords: voltage control; robust control; control system synthesis; LC circuits; resonant invertors

Other keywords: parameter uncertainty; robust controller design; robust stability; frequency 25 kHz; power 120 W; high frequency AC power distribution system; HFAC power source; LCLC resonant inverter; feedback voltage controller; high frequency power distribution system

Subjects: Power electronics, supply and supervisory circuits; Control system analysis and synthesis methods; Voltage control; Stability in control theory; Control of electric power systems

References

    1. 1)
      • 10. Willmann, G., Coutinho, D.F., Pereira, L.F.A., Libano, F.B.: ‘Multiple-loop H-infinity control design for uninterruptible power supplies’, IEEE Trans. Ind. Electron., 2007, 54, (3), pp. 15911602 (doi: 10.1109/TIE.2007.894721).
    2. 2)
      • 2. Drobnik, J.: ‘High frequency alternating current power distribution’. Proc. Int. Telecommunications Energy Conf., 1994, pp. 292296.
    3. 3)
      • 7. Zhao, C., Round, S.D., Kolar, J.W.: ‘Full-order averaging modelling of zero-voltage-switching phase-shift bidirectional DC-DC converters’, IET Power Electron., 2010, 3, (3), pp. 400410 (doi: 10.1049/iet-pel.2008.0208).
    4. 4)
      • 5. Ye, Z.M., Jain, P.K., Sen, P.C.: ‘Performance comparison of inverter structures for high frequency AC distributed power supply system’. Proc. IEEE Industrial Electronics Society Conf., 2004, pp. 755760.
    5. 5)
      • 1. Jain, P., Pinheiro, H.: ‘Hybrid high frequency AC power distribution architecture for telecommunication systems’, IEEE Trans. Aerosp. Electron. Syst., 1999, 35, (1), pp. 138147 (doi: 10.1109/7.745687).
    6. 6)
      • 4. Sudipta, C., Manoja, D.W., Simoes, M.G.: ‘Distributed intelligent energy management system for a single-phase high-frequency AC Microgrid’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 97109 (doi: 10.1109/TIE.2006.888766).
    7. 7)
      • 15. Lin, J.L., Lew, J.S.: ‘Robust controller design for a series resonant converter via duty-cycle control’, IEEE Trans. Power Electron., 1999, 14, (5), pp. 793802 (doi: 10.1109/63.788475).
    8. 8)
      • 3. Bose, B.K., Kin, M.-H., Kankam, M.D.: ‘High frequency AC vs. DC distribution system for next generation hybrid electric vehicle’. Proc. Industrial Electronics, Control, and Instrumentation Conf., 1996, pp. 706712.
    9. 9)
      • 13. Buso, S.: ‘Design of a robust voltage controller for a buck-boost converter using μ-synthesis’, IEEE Trans. Control Syst. Technol., 1999, 7, (2), pp. 222229 (doi: 10.1109/87.748148).
    10. 10)
      • 6. Cheng, K.W.E., Evans, P.D.: ‘Parallel-mode extended-period quasi-resonant converter’, IEE Proc. Electr. Power Appl., 1991, 138, (5), pp. 243251 (doi: 10.1049/ip-b.1991.0029).
    11. 11)
      • 12. Doyle, J.C.: ‘Analysis of feedback systems with structured uncertainties’, IEE Proc. Control Theory Appl., 1982, 129, (6), pp. 242250 (doi: 10.1049/ip-d.1982.0053).
    12. 12)
      • 11. Ye, Z.M., Lam, J.C.W., Jain, P.K., Sen, P.C.: ‘A robust one-cycle controlled full-bridge series-parallel resonant inverter for a high-frequency AC (HFAC) Distribution System’, IEEE Trans. Power Electron., 2007, 22, (6), pp. 23312343 (doi: 10.1109/TPEL.2007.909190).
    13. 13)
      • 17. Chan, H.L., Cheng, K.W.E., Sutanto, D.: ‘Bidirectional phase-shifted DC-DC converter’, IEE Electronics Lett., 1999, 35, (7), pp. 523524 (doi: 10.1049/el:19990390).
    14. 14)
      • 16. Lee, T.S., Tzeng, K.S., Chong, M.S.: ‘Robust controller design for a single-phase UPS inverter using μ-synthesis’, IEE Proc. Electr. Power Appl., 2004, 151, (3), pp. 334340 (doi: 10.1049/ip-epa:20031265).
    15. 15)
      • 9. Naim, R., Weiss, G., Ben-Yaakov, S.: ‘H control applied to boost power converters’, IEEE Trans. Power Electron., 1997, 12, (4), pp. 677683 (doi: 10.1109/63.602563).
    16. 16)
      • 8. Selvaperumal, S., Rajan, C.C.A.: ‘Investigation of closed-loop performance for an LCL resonant converter in a real-time operating system environment’, IET Power Electron., 2012, 5, (5), pp. 511523 (doi: 10.1049/iet-pel.2011.0211).
    17. 17)
      • 14. Lu, Y., Cheng, K.W.E., Ho, S.L., Pan, J.F.: ‘Passivity-based control of a phase-shifted resonant converter’, IEE Proc. Electr. Power Appl., 2005, 152, (6), pp. 15091515 (doi: 10.1049/ip-epa:20045261).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0637
Loading

Related content

content/journals/10.1049/iet-pel.2012.0637
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading