Your browser does not support JavaScript!

Design of a zero-voltage-switching large-air-gap wireless charger with low electric stress for electric vehicles

Design of a zero-voltage-switching large-air-gap wireless charger with low electric stress for electric vehicles

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a design and development of a wireless power transfer system to charge the battery in electric vehicles. A parallel–parallel topology is adopted to realise 10–15 cm-distance power transfer using the resonance theory. Finite-element method is used to extract the coil parameters. The advantages of the proposed design compared with the previous similar research are (i) low operational frequency (42 kHz) which avoids the electromagnetic interference to the on-board automotive electronics equipment and (ii) low electric stress to the semi-conductor switches through using zero-voltage-switching technique. A 2 kW prototype to charge 200 V battery was built to experimentally verify the theoretical analysis. The overall system efficiency is ∼ 86%.


    1. 1)
      • 15. Batista, F.A.B., Barbi, I.: ‘Space vector modulation applied to three-phase three-switch two-level unidirectional PWM rectifier,IEEE Trans. Power Electron., 2007, 22, (6), pp. 22452252 (doi: 10.1109/TPEL.2007.909184).
    2. 2)
      • 3. Low, Z.N., Chinga, R.A., Tseng, R., Lin, J.: ‘Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 18011812 (doi: 10.1109/TIE.2008.2010110).
    3. 3)
      • 7. Imura, T., Hori, Y.: ‘Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 47464752 (doi: 10.1109/TIE.2011.2112317).
    4. 4)
      • 5. Zhang, X., Ho, S.L., Fu, W.N.: ‘Quantitative design and analysis of relay resonators in wireless power transfer system’, IEEE Trans. Magn., 2012, 48, (11), pp. 40264029 (doi: 10.1109/TMAG.2012.2202883).
    5. 5)
      • 9. Hsu, W., Hu, A., Swain, A.: ‘A wireless power pickup based on directional tuning control of magnetic amplifier’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 27712781 (doi: 10.1109/TIE.2009.2020081).
    6. 6)
      • 8. Chen, L., Liu, S., Zhou, Y.C., Cui, T.J.: ‘An optimizable circuit structure for high-efficiency wireless power transfer’, IEEE Trans. Ind. Electron., 2011, 60, (1), pp. 339349 (doi: 10.1109/TIE.2011.2179275).
    7. 7)
      • 1. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J.D., Fisher, P., Soljacic, M.: ‘Wireless power transfer via strongly coupled magnetic resonances’, Science, 2007, 317, (83), pp. 8386 (doi: 10.1126/science.1143254).
    8. 8)
      • 14. Bai, H., Guo, W., Szatmari-Voicu, G., Taylor, A., Patterson, J., Kane, J.: ‘A 10 kW high-efficiency LLC resonant DC/DC converter with wide range of output voltage for the battery chargers in plug-in hybrid electric vehicles’. IEEE Transportation Electrification Conf. and Expo, 2012, online.
    9. 9)
      • 10. Hu, A.P.Selected resonant convertors for IPT power supplies’. PhD dissertation, University Auckland, Auckland, NZ, 2001.
    10. 10)
      • 13. Lin, R., Lin, C.-W.: ‘Design criteria for resonant tank of LLC DC-DC resonant converter’, IECON, 2010, pp. 427432.
    11. 11)
      • 4. Mur-Miranda, J.O., Fanti, G., Feng, Y., et al: ‘Wireless power transfer using weakly coupled magnetostatic resonators’, ECCE, 2010, pp. 41794186.
    12. 12)
      • 11. Wu, X., Xie, X., Zhao, C., Qian, Z., Zhao, R.: ‘Low voltage and current stress ZVZCS full bridge DC–DC converter using center tapped rectifier reset’, IEEE Trans. Ind. Electron., 2008, 55, (3), pp. 14701477 (doi: 10.1109/TIE.2007.911921).
    13. 13)
      • 6. Fotopoulou, K., Flynn, B.W.: ‘Wireless power transfer in loosely coupled links: coiled misalignment model’, IEEE Trans. Magn., 2011, 47, (2), pp. 416430 (doi: 10.1109/TMAG.2010.2093534).
    14. 14)
      • 16. Taylor, A.R., Bai, H., Wang, X.: ‘Design of A 97%-efficiency 10 kW power factor correction for fast electric chargers of plug-in hybrid electric vehicles’. IEEE Transportation Electrification Conf. and Expo (ITEC), 2012, pp. 16.
    15. 15)
      • 2. Lee, S.H., Lorenz, R.D.: ‘Development and validation of model for 95% efficiency, 220 W wireless power transfer over a 30 cm air-gap’, ECCE, 2010, pp. 885892.
    16. 16)
      • 12. Li, Y.L., Sun, Y., Dai, X.: ‘Robust control for an uncertain LCL resonant ICPT system using LMI method’, Control Eng. Pract., 2013, pp. 3141 (doi: 10.1016/j.conengprac.2012.09.006).

Related content

This is a required field
Please enter a valid email address