access icon free A novel approach of space vector modulation for cycloinverter using genetic algorithm

A novel approach has been made to calculate the switching angles for space vector modulation (SVM) technique, which is applied in a cycloinverter to generate high-frequency power output. The turn-on and turn-off times of SVM pattern are evaluated in such a way that the total harmonic distortion (THD) is minimised and the output voltage of cycloinverter approaches as close as possible to desired sinusoidal waveform. To accomplish this optimisation task, genetic algorithms (GAs) is used and THD is adopted in the proposed objective function. The lowest fitness value of this objective function decides the correct value of the switching angles. The switching strategy for the cycloinverter is presented on MATLAB-based time-domain simulations. Simulation results show that the proposed approach with GAs, is superior to the conventional SVM. The output waveforms and their spectrum are presented to show effectiveness of the proposed scheme. Simulated results are also validated with the experimental results.

Inspec keywords: genetic algorithms; PWM invertors; harmonic distortion; power conversion harmonics

Other keywords: genetic algorithm; total harmonic distortion; space vector modulation technique; switching angle; cycloinverter

Subjects: Optimisation techniques; Power electronics, supply and supervisory circuits

References

    1. 1)
      • 9. Lee, M.Y., Wheeler, P., Klumpner, C.: ‘Space-vector modulated multilevel matrix converter’, IEEE Trans. Ind. Electron., 2010, 57, (10), pp. 33853394 (doi: 10.1109/TIE.2009.2038940).
    2. 2)
      • 14. Waware, M.M., Agarwal, P.: ‘Artificial neural network controlled multilevel inverter based active power filter for high voltage systems’, UTM J. Electr. Eng., 2011, 13, (2), pp. 1220.
    3. 3)
      • 15. Baskaran, J., Thamizharasan, S., Raj Tilak, R.: ‘GA based optimization and critical evaluation SHE methods for three-level inverter’. Int. J. Soft Comput. Eng. (IJSCE), 2012, 2, (3), pp. 321326.
    4. 4)
      • 5. Chen, K.Y., Sheng Hu, J.: ‘A filtered SVPWM for multiphase voltage source inverter considering finite pulse width resolution’, IEEE Trans. Power Electron., 2012, 27, (7), pp. 31073118 (doi: 10.1109/TPEL.2011.2181190).
    5. 5)
      • 1. Guennegues, V., Gollentz, B., Meibody-Tabar, F., Rael, S., Leclere, L.: ‘A converter topology for high speed motor drive applications’. 13th European Conf. Power Electronics and Applications (EPE), September 2009, pp. 810.
    6. 6)
      • 4. Dupczak, B.S., Perin, A.J., Heldwein, M.L.: ‘Space vector modulation strategy applied to inter phase transformer based five level current source inverters’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 27402751 (doi: 10.1109/TPEL.2011.2177479).
    7. 7)
      • 20. Osama, Y.A.-R., Abidaoun, H.S., Salih, M.S.: ‘Switching angle optimization based genetic algorithms for harmonic reduction in three phase PWM strategy’, Diyala J. Eng. Sci., 2011, 04, (01), pp. 8394.
    8. 8)
      • 6. Das, S., Narayanan, G.: ‘Novel switching sequences for a space vector modulated three level inverter’, IEEE Trans. Ind. Electron., 2012, 59, (3), pp. 14771467 (doi: 10.1109/TIE.2011.2163373).
    9. 9)
      • 13. Luan, F., Choi, J.-H., Jung, H.-K.: ‘A particle swarm optimization algorithm with novel expected fitness for robust optimization problems’, IEEE Trans. Magn., 2012, 48, (2), pp. 331334 (doi: 10.1109/TMAG.2011.2173753).
    10. 10)
      • 16. Perumal, M., Nanjudapan, D.: ‘Performance enhancement of embedded system based multilevel inverter using genetic algorithms’, J. Electr. Eng., 2011, 62, (4), pp. 190198.
    11. 11)
      • 12. Liao, T.-L., Huang, N.S.: ‘Genetic algorithm-based self-learning fuzzy PI controller for buck converter’, Eur. Trans. Electr. Power, 2012, 9, (4), pp. 233239 (doi: 10.1002/etep.4450090403).
    12. 12)
      • 7. Xingwei, W., Hua, L., Hongwu, S., Bo Feng, S., Narayanan, G.: ‘A research on space vector modulation strategy for matrix converter under abnormal input voltage conditions’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 93104 (doi: 10.1109/TIE.2011.2157288).
    13. 13)
      • 2. Orletti, R., Co, M.A., Simonetti, D.S.L., Vieira, J.L.de F.: ‘HID lamp electronic ballast with reduced component number’, IEEE Trans. Ind. Electron., 2009, 56, (3), pp. 718725 (doi: 10.1109/TIE.2008.2011599).
    14. 14)
      • 21. Agarwal, A., Agarwal, V.: ‘FPGA realization of trapezoidal PWM for generalized frequency converter’, IEEE Trans. Ind. Inf., 2012, 8, (3), pp. 501510 (doi: 10.1109/TII.2012.2193406).
    15. 15)
      • 3. Wallmark, O., Kjellqvist, P., Meier, F.: ‘Analysis of axial leakage in high-speed slot less PM motors for industrial hand tools’, IEEE Trans. Ind. Appl., 2009, 45, (50), pp. 18151820 (doi: 10.1109/TIA.2009.2027109).
    16. 16)
      • 10. Zaragoza, J., Pou, J., Ceballos, S., Robles, E., Ibaez, P., Villate, J.L.: ‘A comprehensive study of a hybrid modulation technique for the neutral-point-clamped converter’, IEEE Trans. Ind. Electron., 2009, 56, (2), pp. 294304 (doi: 10.1109/TIE.2008.2005132).
    17. 17)
      • 17. Agarwal, A., Agarwal, V.: ‘Design of delta modulated generalized frequency converter’, IEEE Trans. Ind. Electron., 2010, 57, (11), pp. 37243729 (doi: 10.1109/TIE.2010.2041740).
    18. 18)
      • 18. Agarwal, P., Agarwal, A., Agarwal, V.: ‘Implementation of space vector modulation for FPGA based frequency converter’. IEEE Int. Telecommunications Energy Conf., (INTELEC), 2011, pp. 16.
    19. 19)
      • 8. Mehrizi-Sani, A., Filizadeh, S.: ‘An optimized space vector modulation sequence for improved harmonic performance’, IEEE Trans. Ind. Electron., 2009, 56, (8), pp. 28942903 (doi: 10.1109/TIE.2008.2008997).
    20. 20)
      • 11. Sedeghi, M., Gholami, M.: ‘Genetic algorithm optimization methodology for PWM inverters of intelligent universal transformer for the advanced distribution automation of future’, Indian J. Sci. Technol., 2012, 5, (2), pp. 20352040.
    21. 21)
      • 19. Agarwal, V., Kumar, A., Singh, R., Robin, T.J.: ‘Modified PWM schemes for cycloinverter’. IEEE Eighth Int. Power Engineering Conf., IPEC, 2007, pp. 655660.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0606
Loading

Related content

content/journals/10.1049/iet-pel.2012.0606
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading