Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Reciprocal effects of the distorted wind turbine source and the shunt active power filter: full compensation of unbalance and harmonics under ‘capacitive non-linear load’ condition

Available compensating algorithms for shunt active power filters (SAPFs) and unified power quality conditioner perform somehow improperly in practice under certain circumstances. Typical examples could be any distorted ‘non-linear loads’ showing low impedances at certain frequencies; also, there are technological limitations for the SAPF in modulating switching frequencies, including microcontroller processing speed, the employed control and modulation techniques, delays and so on. This study proposes an advanced universal power quality conditioning system (AUPQS) to fine tune the available solutions for generating purely sinusoidal wind turbine-end currents under both distorted-unbalanced load-terminal voltages and non-linear load conditions (capacitive loads leave much worse consequences than those of the inductive). It is shown that both series and SAPF are capable of full compensation of microgrid by the SAPF using the advanced generalised theory of instantaneous power. Meanwhile, the resultant source currents could be somehow non-sinusoidal. However, the proposed AUPQS will be able to fully eliminate the consequence of voltage asymmetry and unbalanced waveforms on the SAPF, generated because of the wind turbine operation by performing certain corrections on these solutions. Moreover, an independent single-phase rectifier is proposed at the load-end to regulate DC-link voltage. Effectiveness of the proposed AUPQS is confirmed by Simulink simulations.

References

    1. 1)
      • 18. Suvire, G.O.: ‘Mitigation of problems produced by wind generators in weak systems’. PhD thesis, San Juan National University, Argentina, (in Spanish).
    2. 2)
      • 21. Cheng, D.K.W., Lee, Y.S.: ‘Harmonic compensation for nonlinear loads by active power’. Power Electron. Drive Syst., (PEDS'99c), 1999.
    3. 3)
      • 24. Monteiro, L.F.C., Afonso, J.L., Pinto, J.G., Watanabe, E.H., Aredes, M., Akagi, H.: ‘ Compensation algorithms based on the p–q and CPC theories for switching compensators in micro-grids’. IEEE 978-1-4244-3370, 2009.
    4. 4)
      • 16. Watanabe, E.H., Aredes, M., Akagi, H.: ‘The p–q theory for active filter control: some problems and solutions’. Revista Controle Automação, 2004, 15, (1), pp. 7884.
    5. 5)
      • 6. Pashajavid, E., Tavakoli Bina, M.: ‘Zero-sequence component and harmonic compensation in four-wire systems under non-ideal waveforms’, Przegląd Elektrotechniczny (Electrical Review), R. 85 NR 10/2009.
    6. 6)
      • 2. Fryze, S.: ‘Effective wattless and apparent power in electrical circuits for the case of non-sinusoidal waveform of current and voltage’. Elektrotechnische zeitschr, 1932, pp. 596599.
    7. 7)
      • 29. Tavakoli Bina, M., Pashajavid, E.: ‘An efficient procedure to design passive LCL-filters for active power filters’, Electr. Power Syst. Res., 2009, 79, (4), pp. 606614 (doi: 10.1016/j.epsr.2008.08.014).
    8. 8)
      • 7. Depenbrock, M.: ‘The FBD-method, a generally applicable tool for analyzing power relations’, IEEE Trans. Power Syst., 1993, 8, (2), pp. 381387 (doi: 10.1109/59.260849).
    9. 9)
      • 14. Madureira, A., Oliveira, F., Donsión, M.P.: ‘Statistical study of power quality in wind farms’. ICREPQ’04, 2004.
    10. 10)
      • 22. Hussien, Z.F., Atan, N., Abidin, I.Z.: ‘Shunt active power filter for harmonic compensation of nonlinear loads’. Power Engineering Conf., (PECON 2003), 2003.
    11. 11)
      • 25. Petrovic, V., Jelavic, M., Peric, N.: ‘Identification of wind turbine model for individual pitch controller design’. Proc. 43rd Int. Universities Power Engineering Conf. (UPEC'08), September 2008, pp. 15.
    12. 12)
      • 4. Peng, F.Z., Lai, J.S.: ‘Generalized instantaneous reactive power theory for three-phase power systems’, IEEE 00189456. 1996.
    13. 13)
      • 19. Goya, T., et al: ‘Torsional torque suppression of decentralized generators based on h∞ control theory’. Int. Conf. Power System Transient (IPST'2009), Kyoto, 2–6June 2009.
    14. 14)
      • 18. Suvire, G.O.: ‘Mitigation of problems produced by wind generators in weak systems’. PhD thesis, San Juan National University, Argentina, ly, (in Spanish).
    15. 15)
      • 28. Yiguang, C., Zhiqiang, W., Yonghuan, S, Lingbing, K.: ‘A control strategy of direct driven permanent magnet synchronous generator for maximum power point tracking in wind turbine application’. Int. Conf. Electrical Machines and Systems (ICEMS 2008), 17–20 October 2008, pp. 39213926.
    16. 16)
      • 10. Kim, H.S., Akagi, H.: ‘The instantaneous power theory on the rotating 694 pqr reference frames’. Proc. IEEE/PEDS Conf., Hong Kong, July 1999, pp. 422427.
    17. 17)
      • 23. Fujita, H., Akagi, H.: ‘The unified power quality conditioner: the integration of series and shunt-active filters’, IEEE Trans. Power Electron., 1998, 13, (2), pp. 315322 (doi: 10.1109/63.662847).
    18. 18)
      • 27. Yildirim, D., Gurkaynak, Y.: ‘An algebraic method for maximum power point tracking in wind turbines’. Proc. Second Int. Power and Energy Conf. (PECon 2008), 1–3 December 2008, pp. 445450.
    19. 19)
      • 17. Graovac, D., Katic, V.A., Rufer, A.: ‘Power quality problems compensation with universal power quality conditioning system’, IEEE Trans. Power Deliv., 2007, 22, (2), pp. 968970 (doi: 10.1109/TPWRD.2006.883027).
    20. 20)
      • 5. Tavakoli Bina, M.: ‘Inactive power harmonics control’, 2003, pp. 4650.
    21. 21)
      • 12. Aredes, M., Akagi, H., Watanabe, E.H., Salgado, E.V., Encarnação, L.F.: ‘Comparisons between the p–q and p–q–r theories in three-phase four-wire systems’. IEEE Trans. Power Electron., paper accepted inOctober 2008.
    22. 22)
      • 1. Sabin, D., Sundaram, A.: ‘Quality enhances reliability’, IEEE Spectr., 1996, 33, (2), pp. 3441 (doi: 10.1109/6.482272).
    23. 23)
      • 11. Depenbrock, M., Staudt, V., Wrede, H.: ‘Concerning instantaneous power compensation in three-phase systems by using p–q–r theory’, IEEE Trans. Power Electron., 2004, 19, (4), pp. 11511152 (doi: 10.1109/TPEL.2004.830041).
    24. 24)
      • 20. Rahmani, B., Tavakoli Bina, M.: ‘The compensation algorithm based on advanced GTIP theory for switching compensators and possibility of the micro-grids’ stability’. PSC 25th Int. Power System Conf., 10-F-PQA-1205, 2010, (in Farsi).
    25. 25)
      • 9. Tenti, P., Tedeschi, E., Mattavelli, P.: ‘Cooperative operation of active power filters by instantaneous complex power control’. Proc. Seventh Int. Conf. Power Electronics and Drive Systems, November 2007.
    26. 26)
      • 15. Rahmani, B., Tavakoli Bina, M.: ‘Eliminating the consequence of non-ideal waveforms on the SAPF accuracy due to the wind turbine operation within a micro-grid’. EWEA Conf., April 2011.
    27. 27)
      • 3. Czarnecki, L.S.: ‘Minimization of unbalanced and reactive currents in three-phase asymmetrical circuits with non-sinusoidal voltage’, IEE Proc. B, 1992, 139, (4), pp. 347354.
    28. 28)
      • 13. Oliveira, F., Madureira, A., Donsión, M.P.: ‘Experimental study of power quality in wind farms’. ICREPQ’04, 2004.
    29. 29)
      • 26. Slootweg, J.G., Polinder, H., Kling, W.L.: ‘Initialization of wind turbine models in power system dynamics simulations’. Power Tech. Proc., 2001 IEEE Porto, vol. 4, September 2001.
    30. 30)
      • 8. Czarnecki, L.S.: ‘Currents’ physical components (CPC) in circuits with non-sinusoidal voltages and currents part 2: three-phase three-wire linear circuits’, J. Electr. Power Qual. Utilization, 2005, XI, (2), pp. 314.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0570
Loading

Related content

content/journals/10.1049/iet-pel.2012.0570
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address