access icon free Autonomous operation of ac–dc microgrids with minimised interlinking energy flow

Modern distributed sources can either be ac or dc. It is thus possible to form hybrid microgrids with both ac and dc sub-grids inter-tied by power converters. The resulting hybrid architecture allows loads to be flexibly placed, hence reducing the amount of power conversion needed. Hybrid microgrids can therefore be more efficient if controlled appropriately. For that, a droop scheme is now proposed for coordinating energy flows within the hybrid microgrids. The scheme operates autonomously and efficiently without demanding for fast communication links. The overall energy flow tuning and hybrid microgrids have already been tested in experiments.

Inspec keywords: load flow; distributed power generation; power convertors; power distribution control

Other keywords: droop control; interlinking energy flow; power converters; autonomous operation; energy flow tuning; hybrid microgrids; AC-DC microgrids

Subjects: Power system control; Control of electric power systems; Power convertors and power supplies to apparatus; Distributed power generation

References

    1. 1)
      • 2. Nikkhajoei, H., Lasseter, R.H.: ‘Distributed generation interface to the CERTS microgrid’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 15981608 (doi: 10.1109/TPWRD.2009.2021040).
    2. 2)
      • 21. Johnson, B.K., Lasseter, R.H., Alvarado, F.L., Adapa, R.: ‘Expandable multiterminal dc systems based on voltage droop’, IEEE Trans. Power Deliv., 1993, 8, (4), pp. 19261932 (doi: 10.1109/61.248304).
    3. 3)
      • 16. Mohamed, Y., El-Saadany, E.F.: ‘Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 28062816 (doi: 10.1109/TPEL.2008.2005100).
    4. 4)
      • 5. Datta, M., Senjyu, T., Yona, A., Funabashi, T., Kim, C.H.: ‘A frequency-control approach by photovoltaic generator in a PV–diesel hybrid power system’, IEEE Trans. Energy Convers., 2011, 26, (2), pp. 559571 (doi: 10.1109/TEC.2010.2089688).
    5. 5)
      • 18. Barklund, E., Pogaku, N., Prodanovic, M., Hernandez-Aramburo, C., Green, T.C.: ‘Energy management in autonomous microgrid using stability-constrained droop control of inverters’, IEEE Trans. Power Electron., 2008, 23, (5), pp. 23462352 (doi: 10.1109/TPEL.2008.2001910).
    6. 6)
      • 7. Flourentzou, N., Agelidis, V.G., Demetriades, G.D.: ‘VSC-based HVDC power transmission systems: an overview’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 592602 (doi: 10.1109/TPEL.2008.2008441).
    7. 7)
      • 13. Mura, F., Meyer, C., De Doncker, R.W.: ‘Stability analysis of high-power dc grids’, IEEE Trans. Ind. Appl., 2010, 46, (2), pp. 584592 (doi: 10.1109/TIA.2010.2041095).
    8. 8)
      • 19. Iyer, S.V., Belur, M.N., Chandorkar, M.C.: ‘A generalized computational method to determine stability of a multi-inverter microgrid’, IEEE Trans. Power Electron., 2010, 25, (9), pp. 24202432 (doi: 10.1109/TPEL.2010.2048720).
    9. 9)
      • 17. Majumder, R., Chaudhuri, B., Ghosh, A., Majumder, R., Ledwich, G., Zare, F.: ‘Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 796808 (doi: 10.1109/TPWRS.2009.2032049).
    10. 10)
      • 22. Etxeberria-Otadui, I., de Heredia, A.L., Gaztanaga, H., Bacha, S., Reyero, M.R.: ‘A single synchronous frame hybrid (SSFH) multifrequency controller for power active filters’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 16401648 (doi: 10.1109/TIE.2006.881994).
    11. 11)
      • 8. Petrone, G., Spagnuolo, G., Teodorescu, R., Veerachary, M., Vitelli, M.: ‘Reliability issues in photovoltaic power processing systems’, IEEE Trans. Ind. Electron., 2008, 55, (7), pp. 25692580 (doi: 10.1109/TIE.2008.924016).
    12. 12)
      • 6. Li, S., Haskew, T.A., Xu, L.: ‘Control of HVDC light system using conventional and direct current vector control approaches’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 31063118 (doi: 10.1109/TPEL.2010.2087363).
    13. 13)
      • 12. Meyer, C., Höing, M., Peterson, A., De Doncker, R.W.: ‘Control and design of dc-grids for offshore wind farms’, IEEE Trans. Ind. Appl., 2007, 43, (6), pp. 14751482 (doi: 10.1109/TIA.2007.908182).
    14. 14)
      • 10. Palma, L., Enjeti, P.N.: ‘A modular fuel cell, modular dc–dc converter concept for high performance and enhanced reliability’, IEEE Trans. Power Electron., 2009, 24, (6), pp. 14371443 (doi: 10.1109/TPEL.2009.2012498).
    15. 15)
      • 3. Chakraborty, S., Weiss, M.D., Simoes, M.G.: ‘Distributed intelligent energy management system for a single-phase high-frequency ac microgrid’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 97109 (doi: 10.1109/TIE.2006.888766).
    16. 16)
      • 4. Datta, M., Senjyu, T., Yona, A., Funabashi, T., Kim, C.H.: ‘A coordinated control method for leveling PV output power fluctuations of PV–diesel hybrid systems connected to isolated power utility’, IEEE Trans. Energy Convers., 2009, 24, (1), pp. 153162 (doi: 10.1109/TEC.2008.2008870).
    17. 17)
      • 11. Thounthong, P., Rael, S., Davat, B.: ‘Control strategy of fuel cell and supercapacitors association for a distributed generation system’, IEEE Trans. Ind. Electron., 2007, 54, (6), pp. 32253233 (doi: 10.1109/TIE.2007.896477).
    18. 18)
      • 20. Loh, P.C., Blaabjerg, F.: ‘Autonomous operation of hybrid microgrid with ac and dc sub-grids’. Proc. EPE, Birmingham, UK, September 2011, pp. 110.
    19. 19)
      • 9. Shimizu, T., Wada, K., Nakamura, N.: ‘Flyback-type single-phase utility interactive inverter with power pulsation decoupling on the dc input for an ac photovoltaic module system’, IEEE Trans. Power Electron., 2006, 21, (5), pp. 12641272 (doi: 10.1109/TPEL.2006.880247).
    20. 20)
      • 14. Guerrero, J.M., Hang, L., Uceda, J.: ‘Control of distributed uninterruptible power supply systems’, IEEE Trans. Ind. Electron., 2008, 55, (8), pp. 28452859 (doi: 10.1109/TIE.2008.924173).
    21. 21)
      • 1. Lasseter, R.H., Paigi, P.: ‘Microgrid: a conceptual solution’. Proc. IEEE-PESC, Aachen, Germany, June 2004, pp. 42854290.
    22. 22)
      • 15. Guerrero, J.M., Vasquez, J.C., Matas, J., de Vicuna, L.G., Castilla, M.: ‘Hierarchical control of droop-controlled ac and dc microgrids – a general approach toward standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158172 (doi: 10.1109/TIE.2010.2066534).
    23. 23)
      • 23. Mattavelli, P.: ‘Synchronous-frame harmonic control for high-performance ac power supplies’, IEEE Trans. Ind. Appl., 2001, 37, (3), pp. 864872 (doi: 10.1109/28.924769).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0567
Loading

Related content

content/journals/10.1049/iet-pel.2012.0567
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading