access icon free Cascaded cross-switched multilevel inverter in symmetric and asymmetric conditions

This study proposes and analyses a new cascaded multilevel inverter in both symmetric and asymmetric conditions. Firstly, the topology is presented in general form and then it is optimised. For any given number of voltage levels, the proposed topology reduces the number of switches. In the symmetric condition, the proposed topology offers capability of charge balance control method while reducing the number of switches. Also, unlike the other reduced switch topologies, the proposed topology does not increase the total standing voltage of the switches in comparison with the conventional cascaded H-bridge (CHB) multilevel inverter. In the asymmetric condition, the proposed topology has highest output voltage resolution while keeping the total standing voltage equal to the CHB topology. In other words, in both symmetric and asymmetric conditions the number of switches in the proposed topology is lower than that of the CHB topology. However, both the proposed topology and also the CHB topology have the same total standing voltage on the switches. Other asymmetric topologies use higher number of switches and have higher total standing voltage in comparison with the proposed asymmetric topology. A modified phase-shifted-pulse width modulation is also presented for the proposed symmetric topology. The proposed topology is verified with simulation and experimental results.

Inspec keywords: PWM invertors

Other keywords: modified phase-shifted-pulse width modulation; asymmetric conditions; voltage resolution; CHB topology; charge balance control method; voltage levels; symmetric conditions; cascaded cross-switched multilevel inverter; H-bridge multilevel inverter; total standing voltage

Subjects: Power convertors and power supplies to apparatus

References

    1. 1)
      • 1. Nabae, A., Takahashi, I., Akagi, H.: ‘A new neutral-point-clamped PWM inverter’, IEEE Trans. Ind. Appl., 1981, IA-17, (5), pp. 518523 (doi: 10.1109/TIA.1981.4503992).
    2. 2)
      • 19. Hinago, Y., Koizumi, H.: ‘A switched-capacitor inverter using series/parallel conversion with inductive load’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 878887 (doi: 10.1109/TIE.2011.2158768).
    3. 3)
      • 26. Babaei, E., Moeinian, M.S.: ‘Asymmetric cascaded multilevel inverter with charge balance control of a low resolution symmetric subsystem’, Energy Convers. Manage., 2010, 51, (11), pp. 22722278 (doi: 10.1016/j.enconman.2010.03.022).
    4. 4)
      • 18. Farhadi Kangarlu, M., Babaei, E., Laali, S.: ‘Symmetric multilevel inverter with reduced components based on non-insulated dc voltage sources’, IET Power Electron., 2012, 5, (5), pp. 571581 (doi: 10.1049/iet-pel.2011.0263).
    5. 5)
      • 20. Babaei, E., Farhadi Kangarlu, M., Najaty Mazgar, F.: ‘Symmetric and asymmetric multilevel inverter topologies with reduced switching devices’, Electr. Power Syst. Res., 2012, 86, pp. 122130 (doi: 10.1016/j.epsr.2011.12.013).
    6. 6)
      • 14. Babaei, E., Hosseini, S.H.: ‘New cascaded multilevel inverter topology with minimum number of switches’, Energy Convers. Manage., 2009, 50, (11), pp. 27612767 (doi: 10.1016/j.enconman.2009.06.032).
    7. 7)
      • 8. Malinowski, M., Gopakumar, K., Rodriguez, J., Perez, M.: ‘A survey on cascaded multilevel inverters’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 21972206 (doi: 10.1109/TIE.2009.2030767).
    8. 8)
      • 13. Choi, W.K., Kang, F.S.: ‘H-bridge based multilevel inverter using PWM switching function’. Proc. INTELEC, 2009, pp. 15.
    9. 9)
      • 11. Hinago, Y., Koizumi, H.: ‘A single phase multilevel inverter using switched series/parallel dc voltage sources’, IEEE Trans. Ind. Electron., 2010, 58, (8), pp. 26432650 (doi: 10.1109/TIE.2009.2030204).
    10. 10)
      • 28. Perez, M., Rodriguez, J., Pontt, J., Kouro, S.: ‘Power distribution in hybrid multicell converter with nearest level modulation’. Proc. ISIE, 2007, pp. 736741.
    11. 11)
      • 4. Barbosa, P., Steimer, P., Steinke, J., Winkelnkemper, M., Celanovic, N.: ‘Active-neutral-point-clamped (ANPC) multilevel converter technology’. Proc. IEEE Power Electronics Special Conf., 2005.
    12. 12)
      • 7. Chaudhuri, T., Rufer, A.: ‘Modelling and control of the cross-connected intermediate level voltage source inverter’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 25972604 (doi: 10.1109/TIE.2009.2033486).
    13. 13)
      • 17. Ebrahimi, J., Babaei, E., Gharehpetian, G.B.: ‘A new multilevel converter topology with reduced number of power electronic components’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 655667 (doi: 10.1109/TIE.2011.2151813).
    14. 14)
      • 27. Babaei, E., Farhadi Kangarlu, M.: ‘Multilevel inverter with cross-connected structure’. Iran Patents, Registered under no. 72371 in Iran, 14 November, 2011.
    15. 15)
      • 6. Li, J., Bhattacharya, S., Huang, A.Q.: ‘A new nine-level active NPC (ANPC) converter for grid connection of large wind turbines for distributed generation’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 961972 (doi: 10.1109/TPEL.2010.2093154).
    16. 16)
      • 9. Farhadi Kangarlu, M., Babaei, E.: ‘A generalized cascaded multilevel inverter using series connection of sub-multilevel inverters’, IEEE Trans. Power Electron., 2013, 28, (2), pp. 625636 (doi: 10.1109/TPEL.2012.2203339).
    17. 17)
      • 16. Ebrahimi, J., Babaei, E., Gharehpetian, G.B.: ‘A new topology of cascaded multilevel converters with reduced number of components for high-voltage applications’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 31193130 (doi: 10.1109/TPEL.2011.2148177).
    18. 18)
      • 24. Ramkumar, S., Kamaraj, V., Thamizharasan, S., Jeevananthan, S.: ‘A new series parallel switched multilevel dc-link inverter topology’, Int. J. Electr. Power Energy Syst., 2012, 36, (1), pp. 9399 (doi: 10.1016/j.ijepes.2011.10.028).
    19. 19)
      • 23. Ruiz-Caballero, D., Ramos-Astudillo, R., Mussa, S.A., Heldwein, M.L.: ‘Symmetrical hybrid multilevel dc-ac inverters with reduced number of insulated dc supplies’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 23072314 (doi: 10.1109/TIE.2009.2036636).
    20. 20)
      • 3. Marchesoni, M., Mazzucchelli, M., Tenconi, S.: ‘A nonconventional power converter for plasma stabilization’, IEEE Trans. Power Electron., 1991, 5, (2), pp. 212219 (doi: 10.1109/63.53158).
    21. 21)
      • 22. Lezana, P., Aceiton, R.: ‘Hybrid multicell converter: topology and modulation’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 39383945 (doi: 10.1109/TIE.2010.2102316).
    22. 22)
      • 12. Babaei, E., Hosseini, S.H., Gharehpetian, G.B., Tarafdar Haque, M., Sabahi, M.: ‘Reduction of dc voltage sources and switches in asymmetrical multilevel converters using a novel topology’, Electric Power Syst. Res., 2007, 77, (8), pp. 10731085 (doi: 10.1016/j.epsr.2006.09.012).
    23. 23)
      • 15. Sadigh, A.K., Hosseini, S.H., Sabahi, M., Gharehpetian, G.B.: ‘Double flying capacitor multicell converter based on modified phase-shifted pulsewidth modulation’, IEEE Trans. Power Electron., 2010, 25, (6), pp. 15171526 (doi: 10.1109/TPEL.2009.2039147).
    24. 24)
      • 5. Floricau, D., Gateau, G., Leredde, A.: ‘New active stacked NPC multilevel converter: operation and features’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 22722278 (doi: 10.1109/TIE.2009.2033484).
    25. 25)
      • 25. Tolbert, L.M., Peng, F.Z.: ‘Charge balance control schemes for cascade multilevel converter in Hybrid Electric vehicles’, IEEE Trans. Ind. Electron., 2002, 49, (5), pp. 10581064 (doi: 10.1109/TIE.2002.803213).
    26. 26)
      • 10. Babaei, E.: ‘A cascade multilevel converter topology with reduced number of switches’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 26572664 (doi: 10.1109/TPEL.2008.2005192).
    27. 27)
      • 2. Meynard, T.A., Foch, H.: ‘Multi-level conversion: high voltage choppers and voltage-source inverters’. Proc. PESC, 1992, pp. 397403.
    28. 28)
      • 21. Cegila, A., Guzman, V., Sanchez, C., Ibanez, F., Walter, J., Gimenez, M.I.: ‘A new simplified multilevel inverter topology for DC-AC conversion’, IEEE Trans. Power Electron., 2006, 21, (5), pp. 13111319 (doi: 10.1109/TPEL.2006.880303).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0563
Loading

Related content

content/journals/10.1049/iet-pel.2012.0563
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading