Your browser does not support JavaScript!

Modelling and control of a multi-stage interleaved DC–DC converter with coupled inductors for super-capacitor energy storage system

Modelling and control of a multi-stage interleaved DC–DC converter with coupled inductors for super-capacitor energy storage system

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Interleaved converters with coupled inductors are widely used to share load current in high power applications. It offers high equivalent switching frequency and reduced output current ripples using small size magnetic components. Owing to smaller common-mode inductance, control system can be designed to achieve fast dynamic response. This study proposes eight-channel interleaved DC/DC converter for interfacing super-capacitor energy storage system to a 400 V DC voltage bus. Multi-stage interleaving magnetic circuit with two-phase coupling inductor as a building block is proposed. A methodology is developed to construct the model of the multi-stage magnetic circuit from the basic two-phase coupled inductor model. The derived model is successfully used to evaluate the system power losses and to design the magnetic circuit parameters and its current controller to fulfil the DC/DC converter steady state and dynamic performance specifications. A 20 kW/four stage/8-channel DC/DC converter laboratory prototype has been built to connect a super-capacitor stack to 400 V DC voltage bus. Experimental investigation validates the modelling, the system losses calculations and the design specifications of the system.


    1. 1)
      • 4. Zumel, P., Fernández, C., de Castro, A., Garcia, O.: ‘Efficiency improvement in multiphase converter by changing dynamically the number of phases’. Proc. IEEE APEC, 2006, pp. 16.
    2. 2)
      • 15. Nagaraja, H.N., Kastha, D., Patra, A.: ‘Design principles of a symetrically coupled inductor structures for multiphase synchronous buck converters’, IEEE Trans. Ind. Electron., 2011, 58, (3), pp. 988997 (doi: 10.1109/TIE.2010.2048830).
    3. 3)
      • 9. Chandrasekaran, S., Gökdere, L.U.: ‘Integrated magnetics for interleaved DC–DC boost converter for fuel cell powered vehicles’. Proc. IEEE PESC, 2004, pp. 356361.
    4. 4)
      • 19. Zumel, P., Garcia, O., Cobos, J.A., Uceda, J.: ‘Tight magnetic coupling in multiphase interleaved converters based on simle transformers’. Proc. IEEE APEC, 2005, vol. 1, pp. 385391.
    5. 5)
      • 16. Labouré, E., Cunière, A., Meynard, T.A., Forest, F., Sarraute, E.: ‘A theoretical approach to intercell transformers, application to interleaved conveters’, IEEE Trans. Power Electron., 2008, 23, (1), pp. 464474 (doi: 10.1109/TPEL.2007.911786).
    6. 6)
      • 24. ‘Powerlite C-Cores’, available at
    7. 7)
      • 2. Schittler, A.C., Pappis, D., Rech, C., Campos, A., Costa, M.A.D.: ‘Generalized state-space model for the interleaved buck converter’. Proc. IEEE COBEP, 2011, pp. 451457.
    8. 8)
      • 6. Ćuk, S., Middlebrook, R.D.: ‘A new optimum topology switching dc-to-dc converter’. Proc. IEEE PESC, 1977, pp. 160179.
    9. 9)
      • 18. Zumel, P., Garcia, O., Cobos, J.A., Uceda, J.: ‘Magnetic integration for interleaved converters’. Proc. IEEE APEC, 2003, vol. 2, pp. 11431149.
    10. 10)
      • 8. Witulski, A.F.: ‘Introduction to modeling of transformers and coupled inductors’, IEEE Trans. Power Electron., 1995, 10, (3), pp. 349356 (doi: 10.1109/63.388001).
    11. 11)
      • 26. ‘Data sheet of FS30R06W1E3’, available at
    12. 12)
      • 1. Lee, I.-O., Cho, S.-Y., Moon, G.-W.: ‘Interleaved buck converter having low switching losses and improved step down conversion ratio’, IEEE Trans. Power Electron., 2012, 27, (8), pp. 36643675 (doi: 10.1109/TPEL.2012.2185515).
    13. 13)
      • 3. Mao, H., Yao, L., Wang, C., Batarseh, I.: ‘Analysis of inductor current shaping in non-isolated and isolated multiphase dc–dc converters’, IEEE Trans. Ind. Electron., 2007, 54, (6), pp. 33793388 (doi: 10.1109/TIE.2007.905966).
    14. 14)
      • 17. Li, J., Sullivan, C.R., Schultz, A.: ‘Coupled inductor design optimization for fast response low voltage dc–dc converters’. Proc. IEEE APEC, 2002, vol. 2, pp. 817823.
    15. 15)
      • 7. Ćuk, S., Middlebrook, R.D.: ‘Coupled inductors and other detentions of a new optimum topology switching dc-to-ac converter’. Proc. IEEE IAS Annual Meeting, 1977, pp. 11101126.
    16. 16)
      • 10. Do, H.-L.: ‘Integrated boost converter with single magnetic component’, IET Power. Electron., 2011, 4, (7), pp. 842849 (doi: 10.1049/iet-pel.2010.0256).
    17. 17)
      • 14. Forsyth, A.J., Lopez, G.C.: ‘Sampled – data analysis of dual interleaved boost converter with interphase transformer’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 13381346 (doi: 10.1109/TPEL.2011.2163645).
    18. 18)
      • 5. Balog, R.S., Krein, P.T.: ‘Coupled-Inductor filter: a basic filter building block’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 537546 (doi: 10.1109/TPEL.2012.2186828).
    19. 19)
      • 23. Segaran, D., Holmes, D.G., McGrath, B.P.: ‘Enhanced load step response for a bidirectional dc–dc converter’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 371379 (doi: 10.1109/TPEL.2012.2200505).
    20. 20)
      • 22. Kulsangcharoen, P., Rashed, M., Klumpner, C., et al: ‘Evaluation of a digitally controlled power electronic emulator for supercapattery’. Proc. IET PEMD, 2012, pp. 16.
    21. 21)
      • 11. Lee, S.-Y., Pfaelzer, A.G., van Wyk, J.D.: ‘Comparison of different designs of a 42 V/14 V DC/DC converter regarding losses and thermal aspects’, IEEE Trans. Ind. Appl., 2007, 43, (2), pp. 520530 (doi: 10.1109/TIA.2006.889808).
    22. 22)
      • 21. Park, I.G., Kim, S.I.: ‘Modelling and analysis of multi-interphase transformers for connecting power converters in parallel’. Proc. IEEE PESC, 1997, vol. 2, pp. 11641170.
    23. 23)
      • 20. Chen, Q., Xu, L., Ren, X., Cao, L., Ruan, X.: ‘A novel coupled inductor for interleaved converter’. Proc. IEEE APEC, 2010, pp. 920927.
    24. 24)
      • 12. Huang, X., Wang, X., Nergaard, T., Lai, J.S., Xu, X., Zhu, L.: ‘Parasitic ringing and design issues of digitally controlled high power interleaved boost converters’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 13411352 (doi: 10.1109/TPEL.2004.833434).
    25. 25)
      • 13. Wong, P.L., Xu, P., Yang, B., Lee, F.C.: ‘Performance improvements of interleaving VRMs with coupled inductors’, IEEE Trans. Power Electron., 2001, 16, (4), pp. 499507 (doi: 10.1109/63.931059).
    26. 26)
      • 25. Kulsangcharoen, P., Klumpner, C., Rashed, M., Asher, G.: ‘A new duty cycle based efficiency estimation method for a super-capacitor stack under constant power operation’. Proc. IET PEMD, 2010, pp. 16.

Related content

This is a required field
Please enter a valid email address