Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Research on cascaded three-phase-bridge multilevel converter based on CPS-PWM

Cascaded multilevel converters are emerging as a new breed of power converter options for high-voltage and high-power applications. A cascaded three-phase-bridge (C3PB) multilevel topology is proposed in this study. The new multilevel converter topology is derived from an optimum combination of three-phase voltage source converter modules and it needs fewer switches and dc capacitors than Δ-connected cascaded H-bridge converter under the similar operation condition. The characteristics of the C3PB converter are presented through analysing its current relationship, voltage relationship and power allocation in detail; the analysis results show that all the converter modules equally share the output power. Based on carrier phase-shifted pulse-width modulation (CPS-PWM) technique, simulation results of two-level and three-level inverter are given to verify the theoretical analysis; meanwhile, CPS-PWM and power decoupling control method are employed to validate the three-level C3PB rectifier. Finally, based on Digital Signal Processor (DSP) + Field Programmable Gate Array (FPGA) control board, a lab prototype is built to verify the validity and feasibility of the proposed C3PB converter along with the proposed control method.

References

    1. 1)
      • 23. Zang, C.Y., Pei, Z.j., He, J.J., Guo, T., Zhu, J., Sun, W.: ‘Research on the application of CPS-SPWM technology in cascaded multilevel inverter’. IEEE Int. Electrical Machines and Systems, 2009. (ICEMS), 2009, pp. 14.
    2. 2)
      • 9. Dannier, A., Rizzo, R.: ‘An overview of power electronic transformer: control strategies and topologies’. Int. Symp. Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2012, pp. 15521557.
    3. 3)
      • 10. Hammond, P.W.: ‘A new approach to enhance power quality for medium voltage AC drives’, IEEE Trans. Ind. Appl., 1997, 33, (1), pp. 202208 (doi: 10.1109/28.567113).
    4. 4)
      • 26. Wang, J.H., Yin, H.R., Zhang, J.L., Li, H.D.: ‘Study on power decoupling control of three phase voltage source PWM rectifiers’. CES/IEEE Fifth Int. Power Electronics and Motion Control Conf., 2006, (IPEMC 2006)2006, pp. 15.
    5. 5)
      • 22. McGrath, B.P., Holmes, D.G.: ‘Multicarrier PWM strategies for multilevel inverters’, IEEE Trans. Ind. Electron., 2002, 49, (4), pp. 858867 (doi: 10.1109/TIE.2002.801073).
    6. 6)
      • 11. Peng, F.Z., Lai, J.S., McKeever, J.W., VanCoevering, J.: ‘A multilevel voltage-source inverter with separate DC sources for static VAr generation’, IEEE Trans. Ind. Appl., 1996, 32, (5), pp. 11301138 (doi: 10.1109/28.536875).
    7. 7)
      • 6. Sano, K., Takasaki, M.: ‘A transformerless D-STATCOM based on a multivoltage cascade converter requiring no DC sources’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 27832795 (doi: 10.1109/TPEL.2011.2174383).
    8. 8)
      • 4. Song, Q., Liu, W.H.: ‘Control of a cascade STATCOM with star configuration under unbalanced conditions’, IEEE Trans. Power Electron., 2009, 24, (1), pp. 4558 (doi: 10.1109/TPEL.2008.2009172).
    9. 9)
      • 3. Malinowski, M., Gopakumar, K., Rodriguez, J., Pérez, M.A.: ‘A survey on cascaded multilevel inverters’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 21972206 (doi: 10.1109/TIE.2009.2030767).
    10. 10)
      • 15. Wen, J., Smedley, K.M.: ‘Hexagram converter for static var compensation’. Transmission and Distribution Conf. and Exposition, 2008. T&D. IEEE/PES, pp. 18.
    11. 11)
      • 13. Meynard, T.A., Foch, H., Thomas, P., Courault, J., Jakob, R., Nahrstaedt, M.: ‘Multicell converters: basic concepts and industry applications’, IEEE Trans. Ind. Electron., 2002, 49, (5), pp. 955964 (doi: 10.1109/TIE.2002.803174).
    12. 12)
      • 25. Kazerani, Y., Ye, M., Quintana, V.H.: ‘A novel modeling and control method for three-phase PWM converters’. IEEE 32nd Annual Power Electronics Specialists Conf., 2001, (PESC. 2001), 2001, pp. 102107.
    13. 13)
      • 12. Nabae, A., Takahashi, I., Akagi, H.: ‘A new neutral-point-clamped PWM inverter’, IEEE Trans. Ind. Appl., 1981, IA-17, (5), pp. 518523 (doi: 10.1109/TIA.1981.4503992).
    14. 14)
      • 8. Merwe, W., Mouton, T.: ‘Solid-state transformer topology selection’. IEEE Int. Conf. Industrial Technology, 2009 (ICIT 2009), 2009, pp. 16.
    15. 15)
      • 20. Gupta, K.K., Jain, S.: ‘Topology for multilevel inverters to attain maximum number of levels from given DC sources’, IET Power Electron., 2012, 5, (4), pp. 435446 (doi: 10.1049/iet-pel.2011.0178).
    16. 16)
      • 14. Khazraei, M., Sepahvand, H., Corzine, K.A., Ferdowsi, M.: ‘Active capacitor voltage balancing in single-phase flying-capacitor multilevel power converters’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 769778 (doi: 10.1109/TIE.2011.2157290).
    17. 17)
      • 7. Son, G.T., Lee, H.J., Nam, T.S., et al.: ‘Design and control of a modular multilevel HVDC converter with redundant power modules for noninterruptible energy transfer’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 16111619 (doi: 10.1109/TPWRD.2012.2190530).
    18. 18)
      • 5. Zhao, L., Liu, B.Y., Duan, S.X., Kang, Y., Shi, Y.J., Chen, Z.W.: ‘Research on cascade multilevel STATCOM under unbalanced system voltage’, Proc. CSEE, 2011, 31, (9), pp. 17(in Chinese).
    19. 19)
      • 18. Hinago, Y., Koizumi, H.: ‘A single phase multilevel inverter using switched series/parallel dc voltage sources’, IEEE Trans. Ind. Electron., 2010, 58, (8), pp. 26432650 (doi: 10.1109/TIE.2009.2030204).
    20. 20)
      • 1. Franquelo, L.G., Rodriguez, J., Leon, J.I., Kouro, S., Portillo, R., Prats, M.A.M.: ‘The age of multilevel converters arrives’, IEEE Ind. Electron. Mag., 2008, 2, (2), pp. 2839 (doi: 10.1109/MIE.2008.923519).
    21. 21)
      • 21. Li, Z.-X., Wang, P., Li, Y.-H., Gao, F.-Q.: ‘A novel single-phase five-level inverter with coupled inductors’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 27162725 (doi: 10.1109/TPEL.2011.2176753).
    22. 22)
      • 19. Farhadi Kangarlu, M., Babaei, E., Laali, S.: ‘Symmetric multilevel inverter with reduced components based on non-insulated dc voltage sources’, IET Power Electron., 2012, 5, (5), pp. 571581 (doi: 10.1049/iet-pel.2011.0263).
    23. 23)
      • 2. Rodriguez, J., Franquelo, L.G., Kouro, S., et al.: ‘Multilevel converters: an enabling technology for high power applications’, Proc. IEEE, 2009, 97, (11), pp. 17861817 (doi: 10.1109/JPROC.2009.2030235).
    24. 24)
      • 17. Ruiz-Caballero, D., Ramos-Astudillo, R., Mussa, S.A., Heldwein, M.L.: ‘Symmetrical hybrid multilevel dc-ac converters with reduced number of insulated dc supplies’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 23072314 (doi: 10.1109/TIE.2009.2036636).
    25. 25)
      • 16. Lesnicar, A., Marquardt, R.: ‘An innovative modular multilevel converter topology suitable for a wide power range’. Proc. IEEE Power Tech. Conf., Bologna, Italy, 2003, pp. 16.
    26. 26)
      • 24. Hagiwar, M., Akagi, H.: ‘Control and experiment of pulsewidth-modulated modular multilevel converters’, IEEE Trans. Power Electron., 2009, 24, (7), pp. 17371746 (doi: 10.1109/TPEL.2009.2014236).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0510
Loading

Related content

content/journals/10.1049/iet-pel.2012.0510
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address