Research on cascaded three-phase-bridge multilevel converter based on CPS-PWM

Research on cascaded three-phase-bridge multilevel converter based on CPS-PWM

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Cascaded multilevel converters are emerging as a new breed of power converter options for high-voltage and high-power applications. A cascaded three-phase-bridge (C3PB) multilevel topology is proposed in this study. The new multilevel converter topology is derived from an optimum combination of three-phase voltage source converter modules and it needs fewer switches and dc capacitors than Δ-connected cascaded H-bridge converter under the similar operation condition. The characteristics of the C3PB converter are presented through analysing its current relationship, voltage relationship and power allocation in detail; the analysis results show that all the converter modules equally share the output power. Based on carrier phase-shifted pulse-width modulation (CPS-PWM) technique, simulation results of two-level and three-level inverter are given to verify the theoretical analysis; meanwhile, CPS-PWM and power decoupling control method are employed to validate the three-level C3PB rectifier. Finally, based on Digital Signal Processor (DSP) + Field Programmable Gate Array (FPGA) control board, a lab prototype is built to verify the validity and feasibility of the proposed C3PB converter along with the proposed control method.


    1. 1)
      • 1. Franquelo, L.G., Rodriguez, J., Leon, J.I., Kouro, S., Portillo, R., Prats, M.A.M.: ‘The age of multilevel converters arrives’, IEEE Ind. Electron. Mag., 2008, 2, (2), pp. 2839 (doi: 10.1109/MIE.2008.923519).
    2. 2)
      • 2. Rodriguez, J., Franquelo, L.G., Kouro, S., et al.: ‘Multilevel converters: an enabling technology for high power applications’, Proc. IEEE, 2009, 97, (11), pp. 17861817 (doi: 10.1109/JPROC.2009.2030235).
    3. 3)
      • 3. Malinowski, M., Gopakumar, K., Rodriguez, J., Pérez, M.A.: ‘A survey on cascaded multilevel inverters’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 21972206 (doi: 10.1109/TIE.2009.2030767).
    4. 4)
      • 4. Song, Q., Liu, W.H.: ‘Control of a cascade STATCOM with star configuration under unbalanced conditions’, IEEE Trans. Power Electron., 2009, 24, (1), pp. 4558 (doi: 10.1109/TPEL.2008.2009172).
    5. 5)
      • 5. Zhao, L., Liu, B.Y., Duan, S.X., Kang, Y., Shi, Y.J., Chen, Z.W.: ‘Research on cascade multilevel STATCOM under unbalanced system voltage’, Proc. CSEE, 2011, 31, (9), pp. 17(in Chinese).
    6. 6)
      • 6. Sano, K., Takasaki, M.: ‘A transformerless D-STATCOM based on a multivoltage cascade converter requiring no DC sources’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 27832795 (doi: 10.1109/TPEL.2011.2174383).
    7. 7)
      • 7. Son, G.T., Lee, H.J., Nam, T.S., et al.: ‘Design and control of a modular multilevel HVDC converter with redundant power modules for noninterruptible energy transfer’, IEEE Trans. Power Deliv., 2012, 27, (3), pp. 16111619 (doi: 10.1109/TPWRD.2012.2190530).
    8. 8)
      • 8. Merwe, W., Mouton, T.: ‘Solid-state transformer topology selection’. IEEE Int. Conf. Industrial Technology, 2009 (ICIT 2009), 2009, pp. 16.
    9. 9)
      • 9. Dannier, A., Rizzo, R.: ‘An overview of power electronic transformer: control strategies and topologies’. Int. Symp. Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2012, pp. 15521557.
    10. 10)
      • 10. Hammond, P.W.: ‘A new approach to enhance power quality for medium voltage AC drives’, IEEE Trans. Ind. Appl., 1997, 33, (1), pp. 202208 (doi: 10.1109/28.567113).
    11. 11)
      • 11. Peng, F.Z., Lai, J.S., McKeever, J.W., VanCoevering, J.: ‘A multilevel voltage-source inverter with separate DC sources for static VAr generation’, IEEE Trans. Ind. Appl., 1996, 32, (5), pp. 11301138 (doi: 10.1109/28.536875).
    12. 12)
      • 12. Nabae, A., Takahashi, I., Akagi, H.: ‘A new neutral-point-clamped PWM inverter’, IEEE Trans. Ind. Appl., 1981, IA-17, (5), pp. 518523 (doi: 10.1109/TIA.1981.4503992).
    13. 13)
      • 13. Meynard, T.A., Foch, H., Thomas, P., Courault, J., Jakob, R., Nahrstaedt, M.: ‘Multicell converters: basic concepts and industry applications’, IEEE Trans. Ind. Electron., 2002, 49, (5), pp. 955964 (doi: 10.1109/TIE.2002.803174).
    14. 14)
      • 14. Khazraei, M., Sepahvand, H., Corzine, K.A., Ferdowsi, M.: ‘Active capacitor voltage balancing in single-phase flying-capacitor multilevel power converters’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 769778 (doi: 10.1109/TIE.2011.2157290).
    15. 15)
      • 15. Wen, J., Smedley, K.M.: ‘Hexagram converter for static var compensation’. Transmission and Distribution Conf. and Exposition, 2008. T&D. IEEE/PES, pp. 18.
    16. 16)
      • 16. Lesnicar, A., Marquardt, R.: ‘An innovative modular multilevel converter topology suitable for a wide power range’. Proc. IEEE Power Tech. Conf., Bologna, Italy, 2003, pp. 16.
    17. 17)
      • 17. Ruiz-Caballero, D., Ramos-Astudillo, R., Mussa, S.A., Heldwein, M.L.: ‘Symmetrical hybrid multilevel dc-ac converters with reduced number of insulated dc supplies’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 23072314 (doi: 10.1109/TIE.2009.2036636).
    18. 18)
      • 18. Hinago, Y., Koizumi, H.: ‘A single phase multilevel inverter using switched series/parallel dc voltage sources’, IEEE Trans. Ind. Electron., 2010, 58, (8), pp. 26432650 (doi: 10.1109/TIE.2009.2030204).
    19. 19)
      • 19. Farhadi Kangarlu, M., Babaei, E., Laali, S.: ‘Symmetric multilevel inverter with reduced components based on non-insulated dc voltage sources’, IET Power Electron., 2012, 5, (5), pp. 571581 (doi: 10.1049/iet-pel.2011.0263).
    20. 20)
      • 20. Gupta, K.K., Jain, S.: ‘Topology for multilevel inverters to attain maximum number of levels from given DC sources’, IET Power Electron., 2012, 5, (4), pp. 435446 (doi: 10.1049/iet-pel.2011.0178).
    21. 21)
      • 21. Li, Z.-X., Wang, P., Li, Y.-H., Gao, F.-Q.: ‘A novel single-phase five-level inverter with coupled inductors’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 27162725 (doi: 10.1109/TPEL.2011.2176753).
    22. 22)
      • 22. McGrath, B.P., Holmes, D.G.: ‘Multicarrier PWM strategies for multilevel inverters’, IEEE Trans. Ind. Electron., 2002, 49, (4), pp. 858867 (doi: 10.1109/TIE.2002.801073).
    23. 23)
      • 23. Zang, C.Y., Pei, Z.j., He, J.J., Guo, T., Zhu, J., Sun, W.: ‘Research on the application of CPS-SPWM technology in cascaded multilevel inverter’. IEEE Int. Electrical Machines and Systems, 2009. (ICEMS), 2009, pp. 14.
    24. 24)
      • 24. Hagiwar, M., Akagi, H.: ‘Control and experiment of pulsewidth-modulated modular multilevel converters’, IEEE Trans. Power Electron., 2009, 24, (7), pp. 17371746 (doi: 10.1109/TPEL.2009.2014236).
    25. 25)
      • 25. Kazerani, Y., Ye, M., Quintana, V.H.: ‘A novel modeling and control method for three-phase PWM converters’. IEEE 32nd Annual Power Electronics Specialists Conf., 2001, (PESC. 2001), 2001, pp. 102107.
    26. 26)
      • 26. Wang, J.H., Yin, H.R., Zhang, J.L., Li, H.D.: ‘Study on power decoupling control of three phase voltage source PWM rectifiers’. CES/IEEE Fifth Int. Power Electronics and Motion Control Conf., 2006, (IPEMC 2006)2006, pp. 15.

Related content

This is a required field
Please enter a valid email address