access icon free Unified time-domain formulation of switching frequency for hysteresis current controlled AC/DC and DC/AC grid connected converters

This study presents a unified time-domain formulation of switching frequency for hysteresis current controlled AC/DC and DC/AC grid connected converters. It is shown that the generalised expression of switching frequency obtained can be used for any mode of operation of the converter based on phase relation between the reference AC current and grid voltage. The presented analysis provides information of maximum, minimum and average switching frequencies for all modes of the converter operation. The analytical results derived under different configurations are verified through the experimental results obtained using FPGA-based implementation of the controller for the converter. The applications of the results are shown on the three different single-phase systems operating in current control mode: (i) static synchronous compensator, (ii) boost rectifier and (iii) grid interface of wind-turbine system. The results of switching operations in these applications are verified using simulation studies performed in power systems CAD/electromagnetic transients including DC (PSCAD/EMTDC) software.

Inspec keywords: electric current control; AC-DC power convertors; field programmable gate arrays; time-domain analysis; DC-AC power convertors; hysteresis

Other keywords: switching frequency unified time-domain formulation; grid interface; phase relation; boost rectifier; hysteresis current controlled DC-AC grid connected converters; wind-turbine system; maximum switching frequencies; FPGA-based implementation; static synchronous compensator; average switching frequencies; grid voltage; AC current; PSCAD-EMTDC software; minimum switching frequencies; single-phase systems; hysteresis current controlled AC-DC grid connected converters

Subjects: Discrete control systems; Logic circuits; Current control; Mathematical analysis; Mathematical analysis; Logic and switching circuits; Power electronics, supply and supervisory circuits

References

    1. 1)
      • 26. Ghosh, A., Ledwich, G.: ‘Power quality enhancement using custom power devices’ (Kluwer, Boston, MA, 2002).
    2. 2)
      • 25. Gupta, R., Ghosh, A., Joshi, A.: ‘Characteristic analysis for multisampled digital implementation of fixed-switching-frequency closed-loop modulation of voltage-source inverter’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 23822392 (doi: 10.1109/TIE.2009.2020708).
    3. 3)
      • 21. Prabhakar, N., Mishra, M.K.: ‘Dynamic hysteresis current control to minimize switching for three-phase four-leg VSI topology to compensate nonlinear load’, IEEE Trans. Power Electron., 2010, 25, (8), pp. 19351942 (doi: 10.1109/TPEL.2009.2036616).
    4. 4)
      • 4. Brod, D.M., Novotny, D.M.: ‘Current control of VSI-PWM inverters’, IEEE Trans. Ind. Appl., 1985, 21, (4), pp. 562570 (doi: 10.1109/TIA.1985.349711).
    5. 5)
      • 27. Katiraei, F., Iravani, M.R., Lehn, P.W.: ‘Micro-grid autonomous operation during and subsequent to islanding process’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 248257 (doi: 10.1109/TPWRD.2004.835051).
    6. 6)
      • 15. Behera, R.K., Das, S.P.: ‘Analysis and experimental investigation for switching frequency characterization of a three-level AC-DC converter using frequency domain approach’, IET Power Electron., 2011, 4, (8), pp. 936942 (doi: 10.1049/iet-pel.2010.0149).
    7. 7)
      • 24. Zabihi, S., Zare, F.: ‘Member, ‘An adaptive hysteresis current control based on unipolar PWM for active power filters’. Proc. IEEE AUPEC ’06, 2006, pp. 269277.
    8. 8)
      • 14. Albanna, A.Z., Hatziadoniu, C.J.: ‘Harmonic modeling of hysteresis inverters in frequency domain’, IEEE Trans. Power Electron., 2010, 25, (5), pp. 11101114 (doi: 10.1109/TPEL.2009.2037500).
    9. 9)
      • 20. George, V., Mishra, M.K.: ‘Design and analysis of user-defined constant switching frequency current-control-based four-leg DSTATCOM’, IEEE Trans. Power Electron., 2009, 24, (9), pp. 21482158 (doi: 10.1109/TPEL.2009.2019821).
    10. 10)
      • 7. Krismadinata Rahim, N.A., Selvaraj, J.: ‘Implementation of hysteresis current control for single-phase grid connected inverter’. Proc. Seventh Int. Conf. Power Electronics Drive Systems (PEDES), 2007, pp. 10971101.
    11. 11)
      • 17. Mao, X., Ayyanar, R., Krishnamurthy, H.K.: ‘Optimal variable switching frequency scheme for reducing switching loss in single-phase inverters based on time-domain ripple analysis’, IEEE Trans. Power Electron., 2009, 24, (4), pp. 9911001 (doi: 10.1109/TPEL.2008.2009635).
    12. 12)
      • 22. Milosevic, M., Allmeling, J., Andersson, G.: ‘Interaction between hysteresis controlled inverters used in distributed generation systems’. Proc. Power Eng. Soc. Gen. Meeting, 2004, vol. 2, pp. 21872192.
    13. 13)
      • 8. Bose, B.K.: ‘An adaptive hysteresis-band current control technique of a voltage-fed PWM inverter for machine drive system’, IEEE Trans. Ind. Electron., 1990, 37, (5), pp. 402408 (doi: 10.1109/41.103436).
    14. 14)
      • 23. Ho, C.N.M., Cheung, V.S.P., Chung, H.S.H.: ‘Constant-frequency hysteresis current control of grid-connected VSI without bandwidth control’, IEEE Trans. Power Electron., 2009, 24, (11), pp. 24842495 (doi: 10.1109/TPEL.2009.2031804).
    15. 15)
      • 1. Mohan, N., Undeland, T., Robbins, W.: ‘Power electronics’ (John Wiley and Sons, 2003, 3rd edn.).
    16. 16)
      • 19. Mishra, M.K., Karthikeyan, K.: ‘An investigation on design and switching dynamics of a voltage source inverter to compensate unbalanced and nonlinear loads’, IEEE Trans. Ind. Electron., 2009, 56, (8), pp. 28022810 (doi: 10.1109/TIE.2008.2007999).
    17. 17)
      • 9. Yao, Q., Holmes, D.G.: ‘A simple novel method for variable-hysteresis-band current control of a three phase inverter with constant switching frequency’. IEEE Ind. Appl. Soc. Annual Meeting, 1993, pp. 11221129.
    18. 18)
      • 12. Gupta, R., Ghosh, A.: ‘Frequency-domain characterization of sliding mode control of an inverter used in DSTATCOM application‘, IEEE Trans. Circuits Systs. I, Regul. Pap., 2006, 53, (3), pp. 662676 (doi: 10.1109/TCSI.2005.859053).
    19. 19)
      • 13. Gupta, R., Ghosh, A., Joshi, A.: ‘Multi-band hysteresis modulation and switching characterization for sliding mode controlled cascaded multilevel Inverter’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 23442353 (doi: 10.1109/TIE.2009.2030766).
    20. 20)
      • 16. Gupta, R.: ‘Generalized frequency domain formulation of switching frequency for hysteresis current controlled VSI used for load compensation’, IEEE Trans. Power Electron., 2012, 24, (5), pp. 25262535 (doi: 10.1109/TPEL.2011.2175750).
    21. 21)
      • 10. Dalessandro, L., Drofenik, U., Round, S., Kolar, J.: ‘Novel hysteresis current control for three-phase three-level PWM rectifiers’. Proc. 20th Annual IEEE Applications and Power Electronics Conf. Expo., 2005, vol. 1, pp. 501507.
    22. 22)
      • 18. Kale, M., Ozdemir, E.: ‘An adaptive hysteresis band current controller for shunt active power filter’, Electr. Power Syst. Res., 2005, 73, (2), pp. 113119 (doi: 10.1016/j.epsr.2004.06.006).
    23. 23)
      • 6. Gatlan, C., Gatlan, L.: ‘AC to DC PWM voltage source converter under hysteresis current control’. Proc. IEEE Int. Symp. Industrial Electronics (ISIE), 1997, pp. 469473.
    24. 24)
      • 3. Boys, J.T., Green, A.W.: ‘Current-forced single phase reversible rectifier’, IEE Proc. B, Electr. Power Appl., 1989, 136, (5), pp. 205211 (doi: 10.1049/ip-b.1989.0028).
    25. 25)
      • 2. Rashid, M.H. (Ed.): ‘Handbook of power electronics’ (Academic, New York, 2001).
    26. 26)
      • 11. Srinivasan, R., Oruganti, R.: ‘A unity power factor converter using half-bridge boost topology’, IEEE Trans. Power Electron., 1998, 13, (3), pp. 487500 (doi: 10.1109/63.668112).
    27. 27)
      • 5. Malesani, L., Mattavelli, P., Tomasin, P.: ‘Improved constant frequency hysteresis current control of VSI inverters with simple feedforward bandwidth prediction’, IEEE Trans. Ind. Appl., 1997, 33, pp. 11941202 (doi: 10.1109/28.633796).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0484
Loading

Related content

content/journals/10.1049/iet-pel.2012.0484
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading