Unified time-domain formulation of switching frequency for hysteresis current controlled AC/DC and DC/AC grid connected converters

Unified time-domain formulation of switching frequency for hysteresis current controlled AC/DC and DC/AC grid connected converters

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a unified time-domain formulation of switching frequency for hysteresis current controlled AC/DC and DC/AC grid connected converters. It is shown that the generalised expression of switching frequency obtained can be used for any mode of operation of the converter based on phase relation between the reference AC current and grid voltage. The presented analysis provides information of maximum, minimum and average switching frequencies for all modes of the converter operation. The analytical results derived under different configurations are verified through the experimental results obtained using FPGA-based implementation of the controller for the converter. The applications of the results are shown on the three different single-phase systems operating in current control mode: (i) static synchronous compensator, (ii) boost rectifier and (iii) grid interface of wind-turbine system. The results of switching operations in these applications are verified using simulation studies performed in power systems CAD/electromagnetic transients including DC (PSCAD/EMTDC) software.


    1. 1)
      • 1. Mohan, N., Undeland, T., Robbins, W.: ‘Power electronics’ (John Wiley and Sons, 2003, 3rd edn.).
    2. 2)
      • 2. Rashid, M.H. (Ed.): ‘Handbook of power electronics’ (Academic, New York, 2001).
    3. 3)
      • 3. Boys, J.T., Green, A.W.: ‘Current-forced single phase reversible rectifier’, IEE Proc. B, Electr. Power Appl., 1989, 136, (5), pp. 205211 (doi: 10.1049/ip-b.1989.0028).
    4. 4)
      • 4. Brod, D.M., Novotny, D.M.: ‘Current control of VSI-PWM inverters’, IEEE Trans. Ind. Appl., 1985, 21, (4), pp. 562570 (doi: 10.1109/TIA.1985.349711).
    5. 5)
      • 5. Malesani, L., Mattavelli, P., Tomasin, P.: ‘Improved constant frequency hysteresis current control of VSI inverters with simple feedforward bandwidth prediction’, IEEE Trans. Ind. Appl., 1997, 33, pp. 11941202 (doi: 10.1109/28.633796).
    6. 6)
      • 6. Gatlan, C., Gatlan, L.: ‘AC to DC PWM voltage source converter under hysteresis current control’. Proc. IEEE Int. Symp. Industrial Electronics (ISIE), 1997, pp. 469473.
    7. 7)
      • 7. Krismadinata Rahim, N.A., Selvaraj, J.: ‘Implementation of hysteresis current control for single-phase grid connected inverter’. Proc. Seventh Int. Conf. Power Electronics Drive Systems (PEDES), 2007, pp. 10971101.
    8. 8)
      • 8. Bose, B.K.: ‘An adaptive hysteresis-band current control technique of a voltage-fed PWM inverter for machine drive system’, IEEE Trans. Ind. Electron., 1990, 37, (5), pp. 402408 (doi: 10.1109/41.103436).
    9. 9)
      • 9. Yao, Q., Holmes, D.G.: ‘A simple novel method for variable-hysteresis-band current control of a three phase inverter with constant switching frequency’. IEEE Ind. Appl. Soc. Annual Meeting, 1993, pp. 11221129.
    10. 10)
      • 10. Dalessandro, L., Drofenik, U., Round, S., Kolar, J.: ‘Novel hysteresis current control for three-phase three-level PWM rectifiers’. Proc. 20th Annual IEEE Applications and Power Electronics Conf. Expo., 2005, vol. 1, pp. 501507.
    11. 11)
      • 11. Srinivasan, R., Oruganti, R.: ‘A unity power factor converter using half-bridge boost topology’, IEEE Trans. Power Electron., 1998, 13, (3), pp. 487500 (doi: 10.1109/63.668112).
    12. 12)
      • 12. Gupta, R., Ghosh, A.: ‘Frequency-domain characterization of sliding mode control of an inverter used in DSTATCOM application‘, IEEE Trans. Circuits Systs. I, Regul. Pap., 2006, 53, (3), pp. 662676 (doi: 10.1109/TCSI.2005.859053).
    13. 13)
      • 13. Gupta, R., Ghosh, A., Joshi, A.: ‘Multi-band hysteresis modulation and switching characterization for sliding mode controlled cascaded multilevel Inverter’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 23442353 (doi: 10.1109/TIE.2009.2030766).
    14. 14)
      • 14. Albanna, A.Z., Hatziadoniu, C.J.: ‘Harmonic modeling of hysteresis inverters in frequency domain’, IEEE Trans. Power Electron., 2010, 25, (5), pp. 11101114 (doi: 10.1109/TPEL.2009.2037500).
    15. 15)
      • 15. Behera, R.K., Das, S.P.: ‘Analysis and experimental investigation for switching frequency characterization of a three-level AC-DC converter using frequency domain approach’, IET Power Electron., 2011, 4, (8), pp. 936942 (doi: 10.1049/iet-pel.2010.0149).
    16. 16)
      • 16. Gupta, R.: ‘Generalized frequency domain formulation of switching frequency for hysteresis current controlled VSI used for load compensation’, IEEE Trans. Power Electron., 2012, 24, (5), pp. 25262535 (doi: 10.1109/TPEL.2011.2175750).
    17. 17)
      • 17. Mao, X., Ayyanar, R., Krishnamurthy, H.K.: ‘Optimal variable switching frequency scheme for reducing switching loss in single-phase inverters based on time-domain ripple analysis’, IEEE Trans. Power Electron., 2009, 24, (4), pp. 9911001 (doi: 10.1109/TPEL.2008.2009635).
    18. 18)
      • 18. Kale, M., Ozdemir, E.: ‘An adaptive hysteresis band current controller for shunt active power filter’, Electr. Power Syst. Res., 2005, 73, (2), pp. 113119 (doi: 10.1016/j.epsr.2004.06.006).
    19. 19)
      • 19. Mishra, M.K., Karthikeyan, K.: ‘An investigation on design and switching dynamics of a voltage source inverter to compensate unbalanced and nonlinear loads’, IEEE Trans. Ind. Electron., 2009, 56, (8), pp. 28022810 (doi: 10.1109/TIE.2008.2007999).
    20. 20)
      • 20. George, V., Mishra, M.K.: ‘Design and analysis of user-defined constant switching frequency current-control-based four-leg DSTATCOM’, IEEE Trans. Power Electron., 2009, 24, (9), pp. 21482158 (doi: 10.1109/TPEL.2009.2019821).
    21. 21)
      • 21. Prabhakar, N., Mishra, M.K.: ‘Dynamic hysteresis current control to minimize switching for three-phase four-leg VSI topology to compensate nonlinear load’, IEEE Trans. Power Electron., 2010, 25, (8), pp. 19351942 (doi: 10.1109/TPEL.2009.2036616).
    22. 22)
      • 22. Milosevic, M., Allmeling, J., Andersson, G.: ‘Interaction between hysteresis controlled inverters used in distributed generation systems’. Proc. Power Eng. Soc. Gen. Meeting, 2004, vol. 2, pp. 21872192.
    23. 23)
      • 23. Ho, C.N.M., Cheung, V.S.P., Chung, H.S.H.: ‘Constant-frequency hysteresis current control of grid-connected VSI without bandwidth control’, IEEE Trans. Power Electron., 2009, 24, (11), pp. 24842495 (doi: 10.1109/TPEL.2009.2031804).
    24. 24)
      • 24. Zabihi, S., Zare, F.: ‘Member, ‘An adaptive hysteresis current control based on unipolar PWM for active power filters’. Proc. IEEE AUPEC ’06, 2006, pp. 269277.
    25. 25)
      • 25. Gupta, R., Ghosh, A., Joshi, A.: ‘Characteristic analysis for multisampled digital implementation of fixed-switching-frequency closed-loop modulation of voltage-source inverter’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 23822392 (doi: 10.1109/TIE.2009.2020708).
    26. 26)
      • 26. Ghosh, A., Ledwich, G.: ‘Power quality enhancement using custom power devices’ (Kluwer, Boston, MA, 2002).
    27. 27)
      • 27. Katiraei, F., Iravani, M.R., Lehn, P.W.: ‘Micro-grid autonomous operation during and subsequent to islanding process’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 248257 (doi: 10.1109/TPWRD.2004.835051).

Related content

This is a required field
Please enter a valid email address