access icon free Maximum power point tracking of single-ended primary-inductor converter employing a novel optimisation technique for proportional-integral-derivative controller

This study presents an optimisation technique for proportional-integral-derivative (PID) controller to achieve maximum-power-point tracking (MPPT) of single-ended primary-inductor converter (SEPIC). A new weight function is developed to optimise the PID parameters based on gradient-descent (GD) method by adding low-pass filter term. The proposed optimisation method does not stick in the local minima, which happens frequently with the traditional weight function used in GD method, where the low-pass filter term suppresses the noise and smooths the iteration process. The prototype of the proposed optimised PID-based SEPIC converter for photovoltaic inverter applications is built using DSP-based TMS320F28335. The performance of the proposed optimised PID-based MPPT scheme is tested in both simulation and experiment at different operating conditions. A performance comparison of the proposed GD method with the conventional GD PID is also made in real-time. It is found that the proposed optimised PID-based SEPIC converter is superior to the conventional GD PID controller in terms of power transfer and efficiency. Furthermore, the proposed optimised PID controller for two-level inverter can achieve a better total harmonic distortion (THD) level as compared to the multi-level inverter frequently used by researchers for the same purpose.

Inspec keywords: gradient methods; iterative methods; power filters; power convertors; harmonic distortion; three-term control; digital signal processing chips; maximum power point trackers; digital control; low-pass filters

Other keywords: noise suppression; PID controller; gradient-descent method; multilevel inverter; local minima; proportional-integral-derivative controller; THD level; optimisation technique; optimised PID-based SEPIC converter; optimised PID-based MPPT scheme; PID parameters; photovoltaic inverter applications; maximum power point tracking; weight function; single-ended primary-inductor converter; two-level inverter; GD method; DSP-based TMS320F28335; low-pass filter term; iteration process

Subjects: Control of electric power systems; Discrete control systems; Other power apparatus and electric machines; Optimisation techniques; Interpolation and function approximation (numerical analysis); Optimisation techniques; Power convertors and power supplies to apparatus; Interpolation and function approximation (numerical analysis)

References

    1. 1)
      • 7. Esme, U.:Application of Taguchi method for the optimization of resistance spot welding process’, Arab. J. Sci. Eng., 2009, 34, (2B), pp. 519528.
    2. 2)
      • 26. Selvaraj, J., Rahim, N.A.: ‘Multilevel inverter for grid-connected PV systems employing digital PI controller’, IEEE Trans. Ind. Electron., 2009, 56, (1), pp. 149158 (doi: 10.1109/TIE.2008.928116).
    3. 3)
      • 27. Rahim, N.A., Selvaraj, J.: ‘Multistring five-level inverter with novel PWM control scheme for PV application’, IEEE Trans. Ind. Electron., 2010, 57, (6), pp. 21112123 (doi: 10.1109/TIE.2009.2034683).
    4. 4)
      • 29. McCormack, A.S., Godfrey, K.R.: ‘Rule-based autotuning based on frequency domain identification’, IEEE Trans. Control Syst. Technol., 1998, 6, (1), pp. 4361 (doi: 10.1109/87.654876).
    5. 5)
      • 15. Hyun-Lark, D.: ‘Soft-switching SEPIC converter with ripple-free input current’, IEEE Trans. Power Electron., 2012, 27, pp. 28792887 (doi: 10.1109/TPEL.2011.2175408).
    6. 6)
      • 22. Femia, N., Granozio, D., Petrone, G., Spagnuolo, G., Vitelli, M.: ‘Optimized one-cycle control in photovoltaic grid connected applications’, IEEE Trans. Aerosp. Electron. Syst., 2006, 42, (3), pp. 954972 (doi: 10.1109/TAES.2006.248205).
    7. 7)
      • 33. Pucci, M., Cirrincione, M.: ‘Neural MPPT control of wind generators with induction machines without speed sensors’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 3747 (doi: 10.1109/TIE.2010.2043043).
    8. 8)
      • 17. Don, L., Smoot, J.: ‘A SEPIC fed buck converter’. 2012 27th Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), 2012, pp. 23332339.
    9. 9)
      • 16. Zengshi, C.: ‘PI and sliding mode control of a Cuk converter’, IEEE Trans. Power Electron., 2012, 27, pp. 36953703 (doi: 10.1109/TPEL.2012.2183891).
    10. 10)
      • 25. Dannehl, J., Fuchs, F.W., Hansen, S., Thogersen, P.B.: ‘Investigation of active damping approaches for PI-based current control of grid-connected pulse width modulation converters with LCL filters’, IEEE Trans. Ind. Appl., 2010, 46, (4), pp. 15091517 (doi: 10.1109/TIA.2010.2049974).
    11. 11)
      • 10. Chiang, S.J., Shieh, H.-J., Chen, M.-C.: ‘Modeling and control of PV charger system with SEPIC converter’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 43444353 (doi: 10.1109/TIE.2008.2005144).
    12. 12)
      • 13. Fardoun, A.A., Ismail, E.H., Sabzali, A.J., Al-Saffar, M.A.: ‘New efficient bridgeless Cuk rectifiers for PFC applications’, IEEE Trans. Power Electron., 2012, 27, pp. 32923301 (doi: 10.1109/TPEL.2011.2182662).
    13. 13)
      • 28. Fang, C.C., Astrom, K.J., Ho, W.K.: ‘Refinements of the Ziegler-Nichols tuning formula’, IEE Proc. Control Theory Appl., 1991, 138, (2), pp. 111118 (doi: 10.1049/ip-d.1991.0015).
    14. 14)
      • 24. Rivetta, C.H., Emadi, A., Williamson, G.A., Jayabalan, R., Fahimi, B.: ‘Analysis and control of a buck DC-DC converter operating with constant power load in sea and undersea vehicles’, IEEE Trans. Ind. Appl., 2006, 42, (2), pp. 559572 (doi: 10.1109/TIA.2005.863903).
    15. 15)
      • 4. Hsieh, C., Chou, J.: ‘Design of optimal PID controllers for PWM feedback systems with bilinear plants’, IEEE Trans. Control Syst. Technol., 2007, 15, (6), pp. 10751079 (doi: 10.1109/TCST.2007.908084).
    16. 16)
      • 8. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, 2004).
    17. 17)
      • 18. Mutoh, N., Ohno, M., Inoue, T.: ‘A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation systems’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 10551065 (doi: 10.1109/TIE.2006.878328).
    18. 18)
      • 34. Yazdani, A., Dash, P.: ‘A control methodology and characterization of dynamics for a photovoltaic (PV) system interfaced with a distribution network’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 15381551 (doi: 10.1109/TPWRD.2009.2016632).
    19. 19)
      • 11. Rashid, M.H.: ‘Power electronics, circuits devices and applications’ (Academic Press, 2006).
    20. 20)
      • 21. Sera, D., Teodorescu, R., Hantschel, J., Knoll, M.: ‘Optimized maximum power point tracker for fast-changing environmental conditions’, IEEE Trans. Ind. Electron., 2008, 55, (7), pp. 26292637 (doi: 10.1109/TIE.2008.924036).
    21. 21)
      • 31. Femia, N., Granozio, G., Petrone, G., Spagnuolo, G.: ‘Predictive & adaptive MPPT perturb and observe method’, IEEE Trans. Aerosp. Electron. Syst., 2007, 43, (3), pp. 934950 (doi: 10.1109/TAES.2007.4383584).
    22. 22)
      • 9. Chiu, Ch.: ‘The design and implementation of a wheeled inverted pendulum using an adaptive output recurrent cerebellar model articulation controller’, IEEE Trans. Ind. Electron., 2010, 57, (5), pp. 18141822 (doi: 10.1109/TIE.2009.2032203).
    23. 23)
      • 5. Wai, R., Lee, J., Chuang, K.: ‘Real-time PID control strategy for maglev transportation system via particle swarm optimization’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 646629.
    24. 24)
      • 6. Chen, W., Meng, X., Li, J.: ‘PID controller design of maglev ball system based on chaos parameters optimization’. 2010 Int. Conf. Machine Vision and Human-Machine Interface (MVHI), 24–25 April 2010, pp. 772775.
    25. 25)
      • 19. Cirrincione, M., Pucci, M., Vitale, G.: ‘Growing neural gas (GNG)-based maximum power point tracking for high-performance wind generator with an induction machine’, IEEE Trans. Ind. Appl., 2011, 47, (2), pp. 861872 (doi: 10.1109/TIA.2010.2102994).
    26. 26)
      • 1. Algreer, M., Armstrong, M., Giaouris, D.: ‘Adaptive PD + I control of a switch-mode DC-DC power converter using a recursive FIR predictor’, IEEE Trans. Ind. Appl., 2011, 47, (5), pp. 16 (doi: 10.1109/TIA.2011.2161856).
    27. 27)
      • 32. Agarwal, V., Aggarwal, R., Patidar, P., Patki, Ch.: ‘A novel scheme for rapid tracking of maximum power point in wind energy generation systems’, IEEE Trans. Energy Convers., 2010, 25, (1), pp. 228236 (doi: 10.1109/TEC.2009.2032613).
    28. 28)
      • 30. Wu, T., Chang, Ch., Chen, Y.: ‘A fuzzy-logic-controlled single-stage converter for PV-powered lighting system applications’, IEEE Trans. Ind. Electron., 2000, 47, (2), pp. 287296 (doi: 10.1109/41.836344).
    29. 29)
      • 23. Fortunato, M., Giustiniani, A., Petrone, G., Spagnuolo, G., Vitelli, M.: ‘Maximum power point tracking in a one-cycle-controlled single-stage photovoltaic inverter’, IEEE Trans. Ind. Electron., 2008, 55, (7), pp. 26842693 (doi: 10.1109/TIE.2008.918463).
    30. 30)
      • 3. Gaing, Z.: ‘A particle swarm optimization approach for optimum design of PID controller in AVR system’, IEEE Trans. Energy Convers., 2004, 19, (2), pp. 384391 (doi: 10.1109/TEC.2003.821821).
    31. 31)
      • 20. Rahim, N.A., Selvaraj, J., Krismadenata, C.: ‘Five-level inverter with dual reference modulation technique for grid-connected PV system’, Elsevier, Renew. Energy, 2010, 35, (3), pp. 712720 (doi: 10.1016/j.renene.2009.08.021).
    32. 32)
      • 14. Hongbo, M., Jih-Sheng, L., Quanyuan, F., Wensong, Y., Cong, Z., Zheng, Z.: ‘A novel valley-fill SEPIC-derived power supply without electrolytic capacitor for LED lighting application’, IEEE Trans. Power Electron., 2012, 27, pp. 30573071 (doi: 10.1109/TPEL.2011.2174446).
    33. 33)
      • 2. Kim, K., Rao, P., Burnworth, J.A.: ‘Self-tuning of the PID controller for a digital excitation control system’, IEEE Trans. Ind. Appl., 2010, 46, (4), pp. 15181524 (doi: 10.1109/TIA.2010.2049631).
    34. 34)
      • 12. Umamaheswari, M.G., Uma, G., Vijayalakshmi, K.M.: ‘Design and implementation of reduced-order sliding mode controller for higher-order power factor correction converters’, IET Power Electron., 2011, 4, pp. 984992 (doi: 10.1049/iet-pel.2010.0286).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0416
Loading

Related content

content/journals/10.1049/iet-pel.2012.0416
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading