http://iet.metastore.ingenta.com
1887

Maximum power point tracking of single-ended primary-inductor converter employing a novel optimisation technique for proportional-integral-derivative controller

Maximum power point tracking of single-ended primary-inductor converter employing a novel optimisation technique for proportional-integral-derivative controller

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents an optimisation technique for proportional-integral-derivative (PID) controller to achieve maximum-power-point tracking (MPPT) of single-ended primary-inductor converter (SEPIC). A new weight function is developed to optimise the PID parameters based on gradient-descent (GD) method by adding low-pass filter term. The proposed optimisation method does not stick in the local minima, which happens frequently with the traditional weight function used in GD method, where the low-pass filter term suppresses the noise and smooths the iteration process. The prototype of the proposed optimised PID-based SEPIC converter for photovoltaic inverter applications is built using DSP-based TMS320F28335. The performance of the proposed optimised PID-based MPPT scheme is tested in both simulation and experiment at different operating conditions. A performance comparison of the proposed GD method with the conventional GD PID is also made in real-time. It is found that the proposed optimised PID-based SEPIC converter is superior to the conventional GD PID controller in terms of power transfer and efficiency. Furthermore, the proposed optimised PID controller for two-level inverter can achieve a better total harmonic distortion (THD) level as compared to the multi-level inverter frequently used by researchers for the same purpose.

References

    1. 1)
      • 1. Algreer, M., Armstrong, M., Giaouris, D.: ‘Adaptive PD + I control of a switch-mode DC-DC power converter using a recursive FIR predictor’, IEEE Trans. Ind. Appl., 2011, 47, (5), pp. 16 (doi: 10.1109/TIA.2011.2161856).
    2. 2)
      • 2. Kim, K., Rao, P., Burnworth, J.A.: ‘Self-tuning of the PID controller for a digital excitation control system’, IEEE Trans. Ind. Appl., 2010, 46, (4), pp. 15181524 (doi: 10.1109/TIA.2010.2049631).
    3. 3)
      • 3. Gaing, Z.: ‘A particle swarm optimization approach for optimum design of PID controller in AVR system’, IEEE Trans. Energy Convers., 2004, 19, (2), pp. 384391 (doi: 10.1109/TEC.2003.821821).
    4. 4)
      • 4. Hsieh, C., Chou, J.: ‘Design of optimal PID controllers for PWM feedback systems with bilinear plants’, IEEE Trans. Control Syst. Technol., 2007, 15, (6), pp. 10751079 (doi: 10.1109/TCST.2007.908084).
    5. 5)
      • 5. Wai, R., Lee, J., Chuang, K.: ‘Real-time PID control strategy for maglev transportation system via particle swarm optimization’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 646629.
    6. 6)
      • 6. Chen, W., Meng, X., Li, J.: ‘PID controller design of maglev ball system based on chaos parameters optimization’. 2010 Int. Conf. Machine Vision and Human-Machine Interface (MVHI), 24–25 April 2010, pp. 772775.
    7. 7)
      • 7. Esme, U.:Application of Taguchi method for the optimization of resistance spot welding process’, Arab. J. Sci. Eng., 2009, 34, (2B), pp. 519528.
    8. 8)
      • 8. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, 2004).
    9. 9)
      • 9. Chiu, Ch.: ‘The design and implementation of a wheeled inverted pendulum using an adaptive output recurrent cerebellar model articulation controller’, IEEE Trans. Ind. Electron., 2010, 57, (5), pp. 18141822 (doi: 10.1109/TIE.2009.2032203).
    10. 10)
      • 10. Chiang, S.J., Shieh, H.-J., Chen, M.-C.: ‘Modeling and control of PV charger system with SEPIC converter’, IEEE Trans. Ind. Electron., 2009, 56, (11), pp. 43444353 (doi: 10.1109/TIE.2008.2005144).
    11. 11)
      • 11. Rashid, M.H.: ‘Power electronics, circuits devices and applications’ (Academic Press, 2006).
    12. 12)
      • 12. Umamaheswari, M.G., Uma, G., Vijayalakshmi, K.M.: ‘Design and implementation of reduced-order sliding mode controller for higher-order power factor correction converters’, IET Power Electron., 2011, 4, pp. 984992 (doi: 10.1049/iet-pel.2010.0286).
    13. 13)
      • 13. Fardoun, A.A., Ismail, E.H., Sabzali, A.J., Al-Saffar, M.A.: ‘New efficient bridgeless Cuk rectifiers for PFC applications’, IEEE Trans. Power Electron., 2012, 27, pp. 32923301 (doi: 10.1109/TPEL.2011.2182662).
    14. 14)
      • 14. Hongbo, M., Jih-Sheng, L., Quanyuan, F., Wensong, Y., Cong, Z., Zheng, Z.: ‘A novel valley-fill SEPIC-derived power supply without electrolytic capacitor for LED lighting application’, IEEE Trans. Power Electron., 2012, 27, pp. 30573071 (doi: 10.1109/TPEL.2011.2174446).
    15. 15)
      • 15. Hyun-Lark, D.: ‘Soft-switching SEPIC converter with ripple-free input current’, IEEE Trans. Power Electron., 2012, 27, pp. 28792887 (doi: 10.1109/TPEL.2011.2175408).
    16. 16)
      • 16. Zengshi, C.: ‘PI and sliding mode control of a Cuk converter’, IEEE Trans. Power Electron., 2012, 27, pp. 36953703 (doi: 10.1109/TPEL.2012.2183891).
    17. 17)
      • 17. Don, L., Smoot, J.: ‘A SEPIC fed buck converter’. 2012 27th Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), 2012, pp. 23332339.
    18. 18)
      • 18. Mutoh, N., Ohno, M., Inoue, T.: ‘A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation systems’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 10551065 (doi: 10.1109/TIE.2006.878328).
    19. 19)
      • 19. Cirrincione, M., Pucci, M., Vitale, G.: ‘Growing neural gas (GNG)-based maximum power point tracking for high-performance wind generator with an induction machine’, IEEE Trans. Ind. Appl., 2011, 47, (2), pp. 861872 (doi: 10.1109/TIA.2010.2102994).
    20. 20)
      • 20. Rahim, N.A., Selvaraj, J., Krismadenata, C.: ‘Five-level inverter with dual reference modulation technique for grid-connected PV system’, Elsevier, Renew. Energy, 2010, 35, (3), pp. 712720 (doi: 10.1016/j.renene.2009.08.021).
    21. 21)
      • 21. Sera, D., Teodorescu, R., Hantschel, J., Knoll, M.: ‘Optimized maximum power point tracker for fast-changing environmental conditions’, IEEE Trans. Ind. Electron., 2008, 55, (7), pp. 26292637 (doi: 10.1109/TIE.2008.924036).
    22. 22)
      • 22. Femia, N., Granozio, D., Petrone, G., Spagnuolo, G., Vitelli, M.: ‘Optimized one-cycle control in photovoltaic grid connected applications’, IEEE Trans. Aerosp. Electron. Syst., 2006, 42, (3), pp. 954972 (doi: 10.1109/TAES.2006.248205).
    23. 23)
      • 23. Fortunato, M., Giustiniani, A., Petrone, G., Spagnuolo, G., Vitelli, M.: ‘Maximum power point tracking in a one-cycle-controlled single-stage photovoltaic inverter’, IEEE Trans. Ind. Electron., 2008, 55, (7), pp. 26842693 (doi: 10.1109/TIE.2008.918463).
    24. 24)
      • 24. Rivetta, C.H., Emadi, A., Williamson, G.A., Jayabalan, R., Fahimi, B.: ‘Analysis and control of a buck DC-DC converter operating with constant power load in sea and undersea vehicles’, IEEE Trans. Ind. Appl., 2006, 42, (2), pp. 559572 (doi: 10.1109/TIA.2005.863903).
    25. 25)
      • 25. Dannehl, J., Fuchs, F.W., Hansen, S., Thogersen, P.B.: ‘Investigation of active damping approaches for PI-based current control of grid-connected pulse width modulation converters with LCL filters’, IEEE Trans. Ind. Appl., 2010, 46, (4), pp. 15091517 (doi: 10.1109/TIA.2010.2049974).
    26. 26)
      • 26. Selvaraj, J., Rahim, N.A.: ‘Multilevel inverter for grid-connected PV systems employing digital PI controller’, IEEE Trans. Ind. Electron., 2009, 56, (1), pp. 149158 (doi: 10.1109/TIE.2008.928116).
    27. 27)
      • 27. Rahim, N.A., Selvaraj, J.: ‘Multistring five-level inverter with novel PWM control scheme for PV application’, IEEE Trans. Ind. Electron., 2010, 57, (6), pp. 21112123 (doi: 10.1109/TIE.2009.2034683).
    28. 28)
      • 28. Fang, C.C., Astrom, K.J., Ho, W.K.: ‘Refinements of the Ziegler-Nichols tuning formula’, IEE Proc. Control Theory Appl., 1991, 138, (2), pp. 111118 (doi: 10.1049/ip-d.1991.0015).
    29. 29)
      • 29. McCormack, A.S., Godfrey, K.R.: ‘Rule-based autotuning based on frequency domain identification’, IEEE Trans. Control Syst. Technol., 1998, 6, (1), pp. 4361 (doi: 10.1109/87.654876).
    30. 30)
      • 30. Wu, T., Chang, Ch., Chen, Y.: ‘A fuzzy-logic-controlled single-stage converter for PV-powered lighting system applications’, IEEE Trans. Ind. Electron., 2000, 47, (2), pp. 287296 (doi: 10.1109/41.836344).
    31. 31)
      • 31. Femia, N., Granozio, G., Petrone, G., Spagnuolo, G.: ‘Predictive & adaptive MPPT perturb and observe method’, IEEE Trans. Aerosp. Electron. Syst., 2007, 43, (3), pp. 934950 (doi: 10.1109/TAES.2007.4383584).
    32. 32)
      • 32. Agarwal, V., Aggarwal, R., Patidar, P., Patki, Ch.: ‘A novel scheme for rapid tracking of maximum power point in wind energy generation systems’, IEEE Trans. Energy Convers., 2010, 25, (1), pp. 228236 (doi: 10.1109/TEC.2009.2032613).
    33. 33)
      • 33. Pucci, M., Cirrincione, M.: ‘Neural MPPT control of wind generators with induction machines without speed sensors’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 3747 (doi: 10.1109/TIE.2010.2043043).
    34. 34)
      • 34. Yazdani, A., Dash, P.: ‘A control methodology and characterization of dynamics for a photovoltaic (PV) system interfaced with a distribution network’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 15381551 (doi: 10.1109/TPWRD.2009.2016632).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0416
Loading

Related content

content/journals/10.1049/iet-pel.2012.0416
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address