Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Z(TN )-Observability and control of parallel multicell chopper using Petri nets

This study deals with observability problems and control of the parallel multicell chopper. In the area of strong currents with high switching frequencies, new structures based on the combination of components have been developed. Among them, the authors find the parallel multicell converters that the authors studied in this study. This type of choppers is a DC/DC static power converter which has an output current equals to n (n is the number of cells) times the source current. After recalling the dynamical equations of the converter, its hybrid dynamical behaviour and properties are highlighted. This particular hybrid system induces new and difficult observability problems, such problem can be tackled by a new observability concept [the Z(TN )-observability]. However, for a large number of switching cells in parallel, the complexity of the system makes it impossible to predict the transient behaviour of the converter and therefore all predimensioning. The main disadvantage of this type of converter is the imbalance branches of current with increasing number of cells. Therefore modelling and control with Petri net is proposed to solve the problems of imbalanced of currents and the voltage output regulation with variation of the load. The authors approaches are attested by several numerical simulations considering noisy measurements and load variations.

References

    1. 1)
      • 10. Amghar, B., Darcherif, M., Barbotl, J.-P.: ‘Modelisataion et commande d'un convertisseur multicellulaire parallele par reseau de Petri’. Proc. CIFA, 2012, Grenoble.
    2. 2)
      • 2. Bouhalli, N., Cousineau, M., Sarraute, E., Meynard, T.: ‘Multiphase coupled converter’. IEEE, EPE-PEMC, pp. 281287.
    3. 3)
      • 5. Pinard, M.: ‘Convertisseurs et électronique de puissance’. (Dunod, 2007).
    4. 4)
      • 6. Goebel, R., Hespanha, J., Teel, A.-R., Cai, C., Sanfelice, R.: ‘Hybrid systems: generalized solutions and robust stability’. Proc. IFAC, Nolcos, 2004.
    5. 5)
      • 8. Amghar, B., Darcherif, M., Barbotl, J.-P.: ‘Observability analysis for parallel muticell chopper’. Proc. IEEE SSD'11.
    6. 6)
      • 9. Prob, S., Bachmann, B.: ‘A Petri net library for modeling hybrid systems in open modelica’. Proc. Seventh Modelica Conf., Como, Italy, 20–22 September 2009, pp. 454462.
    7. 7)
      • 18. Midya, P., Krein, P.T., Greuel, M.F.: ‘Sensorless current mode control – an observer-based technique for DC-DC converters’, IEEE Trans. Power Electron., 2001, 16, (4), pp. 522526 (doi: 10.1109/63.931070).
    8. 8)
      • 3. Drighiciu, M.A.: ‘Application du formalisme reseaux de pétri pour la modélisation de systèmes hybrides’. ICCPS, Moldova, 2007, pp. 152155.
    9. 9)
      • 15. Sreekumar, C., Agarwal, V.: ‘Hybrid control approach for the output voltage regulation in buck type DC-DC converter’, IET Electr. Power Appl., 2007, 1, (6), pp. 897906 (doi: 10.1049/iet-epa:20070043).
    10. 10)
      • 16. Sreekumar, C., Agarwal, V.: ‘A hybrid control algorithm for voltage regulation in DC-DC boost converter’, IEEE Trans. Ind. Electron., 2008, 55, (6), pp. 25302538 (doi: 10.1109/TIE.2008.918640).
    11. 11)
      • 13. Li, Z.G., Wen, C.Y., Soh, Y.C.: ‘Observer-based stabilization of switching linear systems’, Automatica, 2003, 39, pp. 517524 (doi: 10.1016/S0005-1098(02)00267-4).
    12. 12)
      • 4. Lafortune, S., Cassandra, G.: ‘Introduction to discrete event systems’, Published in September 1999, (Kuwer Academic Publishers, Hardbound, 1999), p. 848.
    13. 13)
      • 14. Florea, B.C., Stoichescu, D.A., Stefanescu, V.: ‘A Petri net approach to multicellular chopper control’. Proc. IEEE SIITME, 2011.
    14. 14)
      • 17. Gensior, A., Woywode, O., Rudolph, J., Guldner, H.: ‘On differential flatness, trajectory planning, observers, and stabilization for DC-DC converters’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2006, 53, (9), pp. 20002010 (doi: 10.1109/TCSI.2006.880342).
    15. 15)
      • 11. Eckholz, F., Wolf, H., Losansky, J.: ‘A voltage regulator module (VRM) application for a switched mode power supply (SMPS)’. CIEP 2002, VIII IEEE Int., 20–24 October 2002, pp. 139144.
    16. 16)
      • 7. Lygeros, J., Johansson, H.K., Simc, S.N., Zhang, J., Sastry, S.-S.: ‘Dynamical properies of Hubrid automata’, IEEE Trans. Autom. Control, 2003, 48, (1), pp. 217 (doi: 10.1109/TAC.2002.806650).
    17. 17)
      • 1. Meynard, T., Foch, H.: ‘Dispositif de conversion d’énergie electrique à semiconducteur’, Brevet français No.91, 09582, Europe, Japan, USA, Canada, 92, 00652.
    18. 18)
      • 12. Zhang, X., Liu, J., Wong, P.-L., et al: ‘Investigation of candidate VRM topologies for future microprocessors [voltage regulator modules]’. APEC'98, Conf. Proc., 1998, vol. 1, pp. 145150.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0374
Loading

Related content

content/journals/10.1049/iet-pel.2012.0374
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address