access icon free Methods of source current reference generation for predictive control in a direct matrix converter

Two control strategies that allow the control of source and load currents for direct matrix converters are presented in this study. Both methods use the switching state of the converter in the subsequent sampling time, based on an optimisation algorithm given by a simple cost function and the discrete system model. The control goals include regulation of load currents according to an arbitrary reference and good tracking of the source currents to their references. In the first method, the input current reference is given as a function of the instantaneous active power. In the second case, the source current reference is given as a function of the output current reference and system parameters. Experimental results with an experimental prototype support the theoretical approach.

Inspec keywords: switching convertors; matrix convertors; predictive control; optimisation; electric current control

Other keywords: input current reference; switching state converter; instantaneous active power function; source current control; load current regulation; optimisation algorithm; source current reference generation method; discrete system model; predictive control strategy; direct matrix converter; cost function; load current control; source current reference

Subjects: Current control; Optimisation techniques; Optimal control; Power convertors and power supplies to apparatus; Optimisation techniques; Control of electric power systems

References

    1. 1)
      • 32. Rivera, M., Rodriguez, J., Espinoza, J., et al: ‘Imposed sinusoidal source and load currents for an indirect matrix converter’, IEEE Trans. Ind. Electron., 2012, 59, (9), pp. 34273435 (doi: 10.1109/TIE.2011.2172171).
    2. 2)
      • 5. Huber, L., Borojevic, D.: ‘Space vector modulated three-phase to three-phase matrix converter with input power factor correction’, IEEE Trans. Ind. Appl., 1995, 31, (6), pp. 12341246 (doi: 10.1109/28.475693).
    3. 3)
      • 30. Haruna, J., Itoh, J.-I.: ‘Behavior of a matrix converter with a feed back control in an input side’. Int. Power Electronics Conference (IPEC), 2010, June 2010, pp. 12021207.
    4. 4)
      • 22. Timbus, A., Rodriguez, P., Teodorescu, R., Liserre, M., Blaabjerg, F.: ‘Control strategies for distributed power generation systems operating on faulty grid’. IEEE Int. Symp. on Industrial Electronics, 2006, July 2006, vol. 2, pp. 16011607.
    5. 5)
      • 27. Vargas, R., Ammann, U., Rodriguez, J.: ‘Predictive approach to increase efficiency and reduce switching losses on matrix converters’, IEEE Trans. Power Electron., 2009, 24, (4), pp. 894902 (doi: 10.1109/TPEL.2008.2011907).
    6. 6)
      • 7. Blaabjerg, F., Casadei, D., Klumpner, C., Matteini, M.: ‘Comparison of two current modulation strategies for matrix converters under unbalanced input voltage conditions’, IEEE Trans. Ind. Electron., 2002, 49, (2), pp. 289296 (doi: 10.1109/41.993261).
    7. 7)
      • 25. Rivera, M., Rodriguez, J., Wu, B., Espinoza, J., Rojas, C.: ‘Current control for an indirect matrix converter with filter resonance mitigation’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 7179 (doi: 10.1109/TIE.2011.2165311).
    8. 8)
      • 18. Gamboa, P., Silva, J., Pinto, S., Margato, E.: ‘Predictive optimal matrix converter control for a dynamic voltage restorer with flywheel energy storage’. 35th Annu. Conf. IEEE Industrial Electronics, 2009, IECON'09, November 2009, pp. 759764.
    9. 9)
      • 29. Casadei, D., Serra, G., Tani, A.: ‘A general approach for the analysis of the input power quality in matrix converters’, IEEE Trans. Power Electron., 1998, 13, (5), pp. 882891 (doi: 10.1109/63.712295).
    10. 10)
      • 31. Kukrer, O.: ‘Discrete-time current control of voltage-fed three-phase pwm inverters’, IEEE Trans. Power Electron., 1996, 11, (2), pp. 260269 (doi: 10.1109/63.486174).
    11. 11)
      • 23. Rodriguez, P., Timbus, A., Teodorescu, R., Liserre, M., Blaabjerg, F.: ‘Flexible active power control of distributed power generation systems during grid faults’, IEEE Trans. Ind. Electron., 2007, 54, (5), pp. 25832592 (doi: 10.1109/TIE.2007.899914).
    12. 12)
      • 28. Cortes, P., Kouro, S., La Rocca, B., et al: ‘Guidelines for weighting factors design in model predictive control of power converters and drives’. IEEE Int. Conf. on Industrial Technology, 2009, ICIT 2009, February 2009, pp. 17.
    13. 13)
      • 12. Yan, Z., Jia, M., Zhang, C., Wu, W.: ‘An integration spwm strategy for high-frequency link matrix converter with adaptive commutation in one step based on de-re-coupling idea’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 116128 (doi: 10.1109/TIE.2011.2158775).
    14. 14)
      • 33. Cortes, P., Rodriguez, J., Silva, C., Flores, A.: ‘Delay compensation in model predictive current control of a three-phase inverter’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 13231325 (doi: 10.1109/TIE.2011.2157284).
    15. 15)
      • 11. Kiatsookkanatorn, P., Sangwongwanich, S.: ‘A unified pwm method for matrix converters and its carrier-based realization using dipolar modulation technique’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 8092 (doi: 10.1109/TIE.2011.2151823).
    16. 16)
      • 19. Correa, P., Rodriguez, J., Rivera, M., Espinoza, J., Kolar, J.: ‘Predictive control of an indirect matrix converter’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 18471853 (doi: 10.1109/TIE.2009.2013686).
    17. 17)
      • 24. Rivera, M., Rojas, C., Rodriuez, J., Wheeler, P., Wu, B., Espinoza, J.: ‘Predictive current control with input filter resonance mitigation for a direct matrix converter’, IEEE Trans. Power Electron., 2011, 26, (10), pp. 27942803 (doi: 10.1109/TPEL.2011.2121920).
    18. 18)
      • 6. Casadei, D., Serra, G., Tani, A., Zarri, L.: ‘Matrix converter modulation strategies: a new general approach based on space-vector representation of the switch state’, IEEE Trans. Ind. Electron., 2002, 49, (2), pp. 370381 (doi: 10.1109/41.993270).
    19. 19)
      • 15. She, H., Lin, H., He, B., Wang, X., Yue, L., An, X.: ‘Implementation of voltage-based commutation in space-vector-modulated matrix converter’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 154166 (doi: 10.1109/TIE.2011.2130497).
    20. 20)
      • 10. Ahmed, S., Iqbal, A., Abu-Rub, H., Rodriguez, J., Rojas, C., Saleh, M.: ‘Simple carrier-based pwm technique for a three-to-nine-phase direct ac-ac converter’, IEEE Trans. Ind. Electron., 2011, 58, (11), pp. 50145023 (doi: 10.1109/TIE.2011.2134062).
    21. 21)
      • 21. Vargas, R., Ammann, U., Hudoffsky, B., Rodriguez, J., Wheeler, P.: ‘Predictive torque control of an induction machine fed by a matrix converter with reactive input power control’, IEEE Trans. Power Electron., 2010, 25, (6), pp. 14261438 (doi: 10.1109/TPEL.2010.2040839).
    22. 22)
      • 16. Hojabri, H., Mokhtari, H., Chang, L.: ‘A generalized technique of modeling, analysis, and control of a matrix converter using svd’, IEEE Trans. Ind. Electron., 2011, 58, (3), pp. 949959 (doi: 10.1109/TIE.2010.2048836).
    23. 23)
      • 20. Rivera, M., Rodriguez, J., Wheeler, P., Rojas, C., Wilson, A., Espinoza, J.: ‘Control of a matrix converter with imposed sinusoidal source currents’, IEEE Trans. Ind. Electron., 2012, 59, (4), pp. 19391949 (doi: 10.1109/TIE.2011.2167114).
    24. 24)
      • 17. Kouro, S., Cortes, P., Vargas, R., Ammann, U., Rodriguez, J.: ‘Model predictive control, a simple and powerful method to control power converters’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 18261838 (doi: 10.1109/TIE.2008.2008349).
    25. 25)
      • 9. Nguyen, H., Lee, H.-H., Chun, T.-W.: ‘Input power factor compensation algorithms using a new direct-svm method for matrix converter’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 232243 (doi: 10.1109/TIE.2010.2044736).
    26. 26)
      • 14. Lie, X., Clare, J., Wheeler, P., Empringham, L., Yongdong, L.: ‘Capacitor clamped multilevel matrix converter space vector modulation’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 105115 (doi: 10.1109/TIE.2011.2146218).
    27. 27)
      • 2. Rodriguez, J., Rivera, M., Kolar, J., Wheeler, P.: ‘A review of control and modulation methods for matrix converters’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 5870 (doi: 10.1109/TIE.2011.2165310).
    28. 28)
      • 3. Yamamoto, E., Hara, H., Uchino, T., et al: ‘Development of mcs and its applications in industry [industry forum]’, Ind. Electron. Mag. IEEE, 2011, 5, (1), pp. 412 (doi: 10.1109/MIE.2011.940249).
    29. 29)
      • 4. Wheeler, P., Rodriguez, J., Clare, J., Empringham, L., Weinstein, A.: ‘Matrix converters: a technology review’, IEEE Trans. Ind. Electron., 2002, 49, (2), pp. 276288 (doi: 10.1109/41.993260).
    30. 30)
      • 8. Muller, S., Ammann, U., Rees, S.: ‘New time-discrete modulation scheme for matrix converters’, IEEE Trans. Ind. Electron., 2005, 52, (6), pp. 16071615 (doi: 10.1109/TIE.2005.858713).
    31. 31)
      • 1. Kolar, J., Friedli, T., Rodriguez, J., Wheeler, P.: ‘Review of threephase pwm ac–ac converter topologies’, IEEE Trans. Ind. Electron., 2011, 58, (11), pp. 49885006 (doi: 10.1109/TIE.2011.2159353).
    32. 32)
      • 13. Wang, X., Lin, H., She, H., Feng, B.: ‘A research on space vector modulation strategy for matrix converter under abnormal input-voltage conditions’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 93104 (doi: 10.1109/TIE.2011.2157288).
    33. 33)
      • 26. Rivera, M., Rodriguez, J., Espinoza, J., Abu-Rub, H.: ‘Instantaneous reactive power minimization and current control for an indirect matrix converter under a distorted ac supply’, IEEE Trans. Ind. Inform., 2012, 8, (3), pp. 482490 (doi: 10.1109/TII.2012.2194159).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0357
Loading

Related content

content/journals/10.1049/iet-pel.2012.0357
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading