access icon free Multiple-input DC/DC converter topology for hybrid energy system

In this study, a multiple-input non-isolated DC/DC converter topology is presented. The proposed multiple-input DC/DC converter is proficient for energy diversification from renewable and storage energy sources individually or simultaneously. It can be operated in buck, boost and buck–boost modes of operation with the capability of bidirectional power flow to achieve desired voltage level on either side. The development of small-signal modelling based on state-space averaging has been discussed. In addition, a power management control scheme for the proposed converter has also been presented. The proposed concept has been investigated through simulation using the MATLAB/Simulink environment and validated experimentally on a laboratory prototype using dSPACE 1103 real time digital controller.

Inspec keywords: power control; load flow; digital control; DC-DC power convertors

Other keywords: power management control scheme; bidirectional power flow; buck-boost modes; storage energy sources; multiple-input nonisolated DC-DC converter topology; state-space averaging; energy diversification; hybrid energy system; small-signal modelling; dSPACE 1103 real-time digital controller; Matlab-Simulink environment; renewable energy sources

Subjects: Power convertors and power supplies to apparatus; Discrete control systems; Control of electric power systems; Power and energy control

References

    1. 1)
      • 21. Erickson, R.W., Maksimovic, D.: ‘Fundamentals of power electron’ (New York: Kluwer, 2004).
    2. 2)
      • 20. Kwasinski, A.: ‘Identification of feasible topologies for multiple-input DC–DC converters’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 856861 (doi: 10.1109/TPEL.2008.2009538).
    3. 3)
      • 13. Chen, Y.-M., Liu, Y.-C., Lin, S.-H.: ‘Double-Input PWM DC/DC converter for high-/low-voltage sources’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 15381545 (doi: 10.1109/TIE.2006.882001).
    4. 4)
      • 18. Liu, Y.-C., Chen, Y.-M.A systematic approach to synthesizing multi-input DC–DC converters’, IEEE Trans. Power Electron., 2009, 24, (1), pp. 116127 (doi: 10.1109/TPEL.2008.2009170).
    5. 5)
      • 27. Jiang, W., Fahimi, B.: ‘Active current sharing and source management in fuel cell–battery hybrid power system’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 752761 (doi: 10.1109/TIE.2009.2027249).
    6. 6)
      • 24. Tang, W., Lee, F.C., Ridley, R.: ‘Small-signal modeling of average current-mode control’, IEEE Trans. Power Electron., 1993, 8, (2), pp. 112119 (doi: 10.1109/63.223961).
    7. 7)
      • 15. Kumar, L., Jain, S.: ‘A novel multiple input DC-DC converter for electric vehicular applications’. 2012 IEEE Transportation Electrification Conf. Expo (ITEC), 18–20 June 2012, pp. 16.
    8. 8)
      • 25. Mohan, N., Undeland, T.M., Robbins, W.P.: ‘Power electronic converters application and design’ (John Wiley and Sons, 2001, 2nd edn.).
    9. 9)
      • 8. Chen, Y.-M., Liu, Y.-C., Wu, F.-Y.: ‘Multi-input DC/DC converter based on the multiwinding transformer for renewable energy applications’, IEEE Trans. Ind. Appl., 2002, 38, (4), pp. 10961104 (doi: 10.1109/TIA.2002.800776).
    10. 10)
      • 10. Zhao, H., Round, S.D., Kolar, J.W.: ‘An isolated three-port bidirectional DC-DC converter with decoupled power flow management’, IEEE Trans. Power Electron., 2008, 23, (5), pp. 24432453 (doi: 10.1109/TPEL.2008.2002056).
    11. 11)
      • 22. Middlebrook, R.D.: ‘Small-signal modeling of pulse-width modulated switched-mode power converters’, Proc. IEEE, 1988, 76, (4), pp. 343354 (doi: 10.1109/5.4421).
    12. 12)
      • 9. Matsuo, H., Lin, W., Kurokawa, F., Shigemizu, T., Watanabe, N.: ‘Characteristics of the multiple-input DC/DC converter’, IEEE Trans. Ind. Electron., 2004, 51, (3), pp. 625631 (doi: 10.1109/TIE.2004.825362).
    13. 13)
      • 17. Patra, P., Patra, A., Misra, N.: ‘A single-inductor multiple-output switcher with simultaneous buck, boost, and inverted outputs’, IEEE Trans. Power Electron.2012, 27, (4), pp. 19361951 (doi: 10.1109/TPEL.2011.2169813).
    14. 14)
      • 4. Wang, C., Nehrir, M.H.: ‘Power management of a stand-alone wind/photovoltaic/fuel cell energy system’, IEEE Trans Energy Convers., 2008, 23, (3), pp.957967 (doi: 10.1109/TEC.2007.914200).
    15. 15)
      • 6. Khaligh, A., Cao, J., Lee, Y.-J.: ‘A Multiple-Input DC–DC converter topology’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 862868 (doi: 10.1109/TPEL.2008.2009308).
    16. 16)
      • 7. Tao, H., Kotsopoulos, A., Duarte, J.L., Hendrix, M.A.M.: ‘Family of multiport bidirectional DC–DC converters’, IEE Proc. Electric Power Appl., 2006, 153, (3), pp. 451458 (doi: 10.1049/ip-epa:20050362).
    17. 17)
      • 5. Jiang, W., Fahimi, B.: ‘Multiport power electronic interface – concept, modeling, and design’, IEEE Trans Power Electron., 2011, 26, (7), pp. 18901900 (doi: 10.1109/TPEL.2010.2093583).
    18. 18)
      • 26. Benavides, N.D., Chapman, P.L.: ‘Power budgeting of a multiple-input buck-boost converter’, IEEE Trans. Power Electron., 2005, 20, (6), pp. 13031309 (doi: 10.1109/TPEL.2005.857531).
    19. 19)
      • 19. Li, Y., Ruan, X., Yang, D., Liu, F., Tse, C.K.: ‘Synthesis of multiple-input DC/DC Converters’, IEEE Trans. Power Electron., 2010, 25, (9), pp. 23722385 (doi: 10.1109/TPEL.2010.2047273).
    20. 20)
      • 11. Dobbs, B.G., Chapman, P.L.: ‘A multiple-input DC–DC converter’, IEEE Power Electron. Lett., 2003, 1, (1), pp. 69 (doi: 10.1109/LPEL.2003.813481).
    21. 21)
      • 23. Kondrath, N., Kazimierczuk, M.K.: ‘Unified model to derive control-to-output transfer function of peak current-mode-controlled pulse-width modulated dc-dc converters in continuous conduction mode’, IET Power Electron., 2012, 5, (9), pp. 17061713 (doi: 10.1049/iet-pel.2012.0147).
    22. 22)
      • 14. Ahmadi, R., Ferdowsi, M.: ‘Double-input converters based on H-bridge cells: derivation, small-signal modeling, and power sharing analysis’, IEEE Trans. Circuits Syst. I, Reg. Pap., 2012, 59, (4), pp. 875888 (doi: 10.1109/TCSI.2011.2169910).
    23. 23)
      • 2. Valenciaga, F., Puleston, P.F.: ‘Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy’, IEEE Trans. Energy Convers., 2005, 20, (2), pp. 398405 (doi: 10.1109/TEC.2005.845524).
    24. 24)
      • 12. Gummi, K., Ferdowsi, M.: ‘Double-input DC–DC power electronic converters for electric-drive vehicles – topology exploration and synthesis using a single-pole triple-throw switch’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 617623 (doi: 10.1109/TIE.2009.2032762).
    25. 25)
      • 1. Cao, J., Emadi, A.: ‘A new battery/ultracapacitor hybrid energy–storage system for electric, hybrid, and plug-in hybrid electric vehicles’, IEEE Trans. Power Electron., 2012, 27, (1), pp.122132 (doi: 10.1109/TPEL.2011.2151206).
    26. 26)
      • 3. Sumit, K., Ikkurti, H.P.: ‘Design and control of novel power electronics interface for battery-ultracapacitor hybrid energy storage system’, Int. Conf., Sustainable Energy and Intelligent Systems (SEISCON 2011), 20–22 July 2011, pp. 236241.
    27. 27)
      • 16. Nami, A., Zare, F., Ghosh, A., Blaabjerg, F.: ‘Multi-output DC-DC converters based on diode-clamped converters configuration: topology and control strategy’, IET Power Electron.2010, (2), pp. 197208 (doi: 10.1049/iet-pel.2008.0341).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0309
Loading

Related content

content/journals/10.1049/iet-pel.2012.0309
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading