http://iet.metastore.ingenta.com
1887

Multiple-input DC/DC converter topology for hybrid energy system

Multiple-input DC/DC converter topology for hybrid energy system

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a multiple-input non-isolated DC/DC converter topology is presented. The proposed multiple-input DC/DC converter is proficient for energy diversification from renewable and storage energy sources individually or simultaneously. It can be operated in buck, boost and buck–boost modes of operation with the capability of bidirectional power flow to achieve desired voltage level on either side. The development of small-signal modelling based on state-space averaging has been discussed. In addition, a power management control scheme for the proposed converter has also been presented. The proposed concept has been investigated through simulation using the MATLAB/Simulink environment and validated experimentally on a laboratory prototype using dSPACE 1103 real time digital controller.

References

    1. 1)
      • 1. Cao, J., Emadi, A.: ‘A new battery/ultracapacitor hybrid energy–storage system for electric, hybrid, and plug-in hybrid electric vehicles’, IEEE Trans. Power Electron., 2012, 27, (1), pp.122132 (doi: 10.1109/TPEL.2011.2151206).
    2. 2)
      • 2. Valenciaga, F., Puleston, P.F.: ‘Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy’, IEEE Trans. Energy Convers., 2005, 20, (2), pp. 398405 (doi: 10.1109/TEC.2005.845524).
    3. 3)
      • 3. Sumit, K., Ikkurti, H.P.: ‘Design and control of novel power electronics interface for battery-ultracapacitor hybrid energy storage system’, Int. Conf., Sustainable Energy and Intelligent Systems (SEISCON 2011), 20–22 July 2011, pp. 236241.
    4. 4)
      • 4. Wang, C., Nehrir, M.H.: ‘Power management of a stand-alone wind/photovoltaic/fuel cell energy system’, IEEE Trans Energy Convers., 2008, 23, (3), pp.957967 (doi: 10.1109/TEC.2007.914200).
    5. 5)
      • 5. Jiang, W., Fahimi, B.: ‘Multiport power electronic interface – concept, modeling, and design’, IEEE Trans Power Electron., 2011, 26, (7), pp. 18901900 (doi: 10.1109/TPEL.2010.2093583).
    6. 6)
      • 6. Khaligh, A., Cao, J., Lee, Y.-J.: ‘A Multiple-Input DC–DC converter topology’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 862868 (doi: 10.1109/TPEL.2008.2009308).
    7. 7)
      • 7. Tao, H., Kotsopoulos, A., Duarte, J.L., Hendrix, M.A.M.: ‘Family of multiport bidirectional DC–DC converters’, IEE Proc. Electric Power Appl., 2006, 153, (3), pp. 451458 (doi: 10.1049/ip-epa:20050362).
    8. 8)
      • 8. Chen, Y.-M., Liu, Y.-C., Wu, F.-Y.: ‘Multi-input DC/DC converter based on the multiwinding transformer for renewable energy applications’, IEEE Trans. Ind. Appl., 2002, 38, (4), pp. 10961104 (doi: 10.1109/TIA.2002.800776).
    9. 9)
      • 9. Matsuo, H., Lin, W., Kurokawa, F., Shigemizu, T., Watanabe, N.: ‘Characteristics of the multiple-input DC/DC converter’, IEEE Trans. Ind. Electron., 2004, 51, (3), pp. 625631 (doi: 10.1109/TIE.2004.825362).
    10. 10)
      • 10. Zhao, H., Round, S.D., Kolar, J.W.: ‘An isolated three-port bidirectional DC-DC converter with decoupled power flow management’, IEEE Trans. Power Electron., 2008, 23, (5), pp. 24432453 (doi: 10.1109/TPEL.2008.2002056).
    11. 11)
      • 11. Dobbs, B.G., Chapman, P.L.: ‘A multiple-input DC–DC converter’, IEEE Power Electron. Lett., 2003, 1, (1), pp. 69 (doi: 10.1109/LPEL.2003.813481).
    12. 12)
      • 12. Gummi, K., Ferdowsi, M.: ‘Double-input DC–DC power electronic converters for electric-drive vehicles – topology exploration and synthesis using a single-pole triple-throw switch’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 617623 (doi: 10.1109/TIE.2009.2032762).
    13. 13)
      • 13. Chen, Y.-M., Liu, Y.-C., Lin, S.-H.: ‘Double-Input PWM DC/DC converter for high-/low-voltage sources’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 15381545 (doi: 10.1109/TIE.2006.882001).
    14. 14)
      • 14. Ahmadi, R., Ferdowsi, M.: ‘Double-input converters based on H-bridge cells: derivation, small-signal modeling, and power sharing analysis’, IEEE Trans. Circuits Syst. I, Reg. Pap., 2012, 59, (4), pp. 875888 (doi: 10.1109/TCSI.2011.2169910).
    15. 15)
      • 15. Kumar, L., Jain, S.: ‘A novel multiple input DC-DC converter for electric vehicular applications’. 2012 IEEE Transportation Electrification Conf. Expo (ITEC), 18–20 June 2012, pp. 16.
    16. 16)
      • 16. Nami, A., Zare, F., Ghosh, A., Blaabjerg, F.: ‘Multi-output DC-DC converters based on diode-clamped converters configuration: topology and control strategy’, IET Power Electron.2010, (2), pp. 197208 (doi: 10.1049/iet-pel.2008.0341).
    17. 17)
      • 17. Patra, P., Patra, A., Misra, N.: ‘A single-inductor multiple-output switcher with simultaneous buck, boost, and inverted outputs’, IEEE Trans. Power Electron.2012, 27, (4), pp. 19361951 (doi: 10.1109/TPEL.2011.2169813).
    18. 18)
      • 18. Liu, Y.-C., Chen, Y.-M.A systematic approach to synthesizing multi-input DC–DC converters’, IEEE Trans. Power Electron., 2009, 24, (1), pp. 116127 (doi: 10.1109/TPEL.2008.2009170).
    19. 19)
      • 19. Li, Y., Ruan, X., Yang, D., Liu, F., Tse, C.K.: ‘Synthesis of multiple-input DC/DC Converters’, IEEE Trans. Power Electron., 2010, 25, (9), pp. 23722385 (doi: 10.1109/TPEL.2010.2047273).
    20. 20)
      • 20. Kwasinski, A.: ‘Identification of feasible topologies for multiple-input DC–DC converters’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 856861 (doi: 10.1109/TPEL.2008.2009538).
    21. 21)
      • 21. Erickson, R.W., Maksimovic, D.: ‘Fundamentals of power electron’ (New York: Kluwer, 2004).
    22. 22)
      • 22. Middlebrook, R.D.: ‘Small-signal modeling of pulse-width modulated switched-mode power converters’, Proc. IEEE, 1988, 76, (4), pp. 343354 (doi: 10.1109/5.4421).
    23. 23)
      • 23. Kondrath, N., Kazimierczuk, M.K.: ‘Unified model to derive control-to-output transfer function of peak current-mode-controlled pulse-width modulated dc-dc converters in continuous conduction mode’, IET Power Electron., 2012, 5, (9), pp. 17061713 (doi: 10.1049/iet-pel.2012.0147).
    24. 24)
      • 24. Tang, W., Lee, F.C., Ridley, R.: ‘Small-signal modeling of average current-mode control’, IEEE Trans. Power Electron., 1993, 8, (2), pp. 112119 (doi: 10.1109/63.223961).
    25. 25)
      • 25. Mohan, N., Undeland, T.M., Robbins, W.P.: ‘Power electronic converters application and design’ (John Wiley and Sons, 2001, 2nd edn.).
    26. 26)
      • 26. Benavides, N.D., Chapman, P.L.: ‘Power budgeting of a multiple-input buck-boost converter’, IEEE Trans. Power Electron., 2005, 20, (6), pp. 13031309 (doi: 10.1109/TPEL.2005.857531).
    27. 27)
      • 27. Jiang, W., Fahimi, B.: ‘Active current sharing and source management in fuel cell–battery hybrid power system’, IEEE Trans. Ind. Electron., 2010, 57, (2), pp. 752761 (doi: 10.1109/TIE.2009.2027249).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0309
Loading

Related content

content/journals/10.1049/iet-pel.2012.0309
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address