http://iet.metastore.ingenta.com
1887

Primary side feedforward control for TRIAC dimmable light emitting diode driver with Constant Power

Primary side feedforward control for TRIAC dimmable light emitting diode driver with Constant Power

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a primary side feedforward control scheme for low-power Triode AC semiconductor switch dimmable light emitting diode (LED) driver. The LED driver is a Flyback converter operated in constant frequency (CF) discontinuous current mode (DCM). With the proposed control scheme, the input power of the Flyback converter can be controlled by the TRIAC dimming angle, which is not affected by the AC input voltage. That is to say, the input power is constant with certain dimming angle. Besides, the output power is determined by the input power with a given conversion efficiency. For LED load, since the output voltage is almost constant, the output current can be regulated by TRIAC dimming angle without any secondary side feedback circuit. Almost linear dimming curve can be achieved. Also, the input current automatically follows the input voltage because of CF DCM operation, resistive input characteristic can be achieved and no dummy load is required for TRIAC dimming angle detection. Considering the LED forward voltage drop tolerance existed in the practical application, the related compensation method is also discussed in this study, which can further improve the performance of the proposed control scheme. A prototype with 27 V/0.5 A output and 180–265 V AC input has been built. Moreover, the experimental results from the prototype are presented to verify the theoretical analysis.

References

    1. 1)
      • 1. Zhang, J., Xu, L., Wu, X., Qian, Z.: ‘A precise passive current balancing method for multi-output LED drivers’, IEEE Trans. Power Electron., 2011, 26, (8), pp. 21492159.
    2. 2)
      • 2. Chen, N., Chung, H.S.H.: ‘A driving technology for retrofit led lamp for fluorescent lighting fixtures with electronic ballasts’, IEEE Trans. Power Electron., 2011, 26, (2), pp. 588601.
    3. 3)
      • 3. Qiu, X., Wong, S.-C., Tse, C.K.: ‘Resonance-assisted buck converter for offline driving of power led replacement lamps’, IEEE Trans. Power Electron., 2011, 26, (2), pp. 532540.
    4. 4)
      • 4. Tjokrorahardjo, A.: ‘Simple TRIAC dimmable compact fluorescent lamp ballast and light emitting diode driver’. Proc. IEEE Applied Power Electronics Conf., 2010, pp. 13521357.
    5. 5)
      • 5. Rand, D., Lehman, B., Shteynberg, A.: ‘Issues, models and solutions for TRIAC modulated phase dimming of LED lamps’. Proc. IEEE Power Electronics Specialists Conf., 2007, pp. 13981404.
    6. 6)
      • 6. Xu, L., Zeng, H., Zhang, J., Qian, Z.: ‘A primary side controlled WLED driver compatible with TRIAC dimmer’. Proc. IEEE Applied Power Electronics Conf., 2011, pp. 699704.
    7. 7)
      • 7. Jung, H.-M., Kim, J.-H., Lee, B.-K., Yoo, D.-W.: ‘A new PWM dimmer using two active switches for AC LED lamp’. Proc. Int. Power Electronics Conf., 2010, pp. 15471551.
    8. 8)
      • 8. Hwu, K.I., Tu, W.C.: ‘Dimmable driver for light-emitting diode with total harmonic distortion improved’, IET Power Electron., 2012, 5, (1), pp. 5967.
    9. 9)
      • 9. Energy star program requirements for solid state lighting luminaires eligibility criteria – Version 1.1, 19 December 2008.
    10. 10)
      • 10. Lamar, D.G., Zuniga, J.S., Alonso, A.R., Gonzalez, M.R., Alvarez, M.M.H.: ‘A very simple control strategy for power factor correctors driving high-brightness LEDs’, IEEE Trans. Power Electron., 2009, 24, (8), pp. 20322042.
    11. 11)
      • 11. Hu, Q.C., Zane, R.: ‘A 0.9 PF LED driver with small LED current ripple based on series-input digitally-controlled converter modules’. Proc. IEEE Applied Power Electronics Conf., 2010, pp. 23142320.
    12. 12)
      • 12. Gacio, D., Alonso, J.M., Calleja, A.J., Garcia, J., Rico-Secades, M.: ‘A universal-input single-stage high-power-factor power supply for hB-LEDs based on integrated buck-flyback converter’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 589599.
    13. 13)
      • 13. Alonso, J., Vina, J., Gacio, D., Martinez, G., Osorio Sanchez, R.: ‘Analysis and design of the integrated double buck-boost converter as a high-power-factor driver for power-LED lamps’, IEEE Trans. Ind. Electron., 2012, 59 (4), pp. 16891697.
    14. 14)
      • 14. Li, Y.C., Chen, C.L.: ‘A novel single-stage high-power-factor AC-to-DC LED driving circuit with leakage inductance energy recycling’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 793802.
    15. 15)
      • 15. Pinto, R., Cosetin, M., Campos, A., Prado, R., Dalla Costa, M.: ‘Compact emergency lamp using power LEDs’, IEEE Trans. Ind. Electron., 2012, 59 (4), pp. 17281738.
    16. 16)
      • 16. Cheng, H., Hsieh, Y., Lin, C.: ‘A novel single-stage high-power-factor ac/dc converter featuring high circuit efficiency’, IEEE Trans. Ind. Electron., 2010, 58, (2), pp. 524532.
    17. 17)
      • 17. Granti, M.: ‘Regulating output current from a primary side power converter by clamping an error signal’. US Patent 2008/025965 A1, October 2008.
    18. 18)
      • 18. Huynh, S., Chen, M., Xiao, C., Yu, M.: ‘Primary side constant output current controller’. US Patent 2006/0285365 A1, December 2006.
    19. 19)
      • 19. Du, S., Zhu, F., Qian, P.: ‘Primary side control circuit of a flyback converter for HBLED’. Second IEEE Int. Symp. Power Electronics for Distributed Generation Systems (PEDG), 2010, 2010, pp. 339342.
    20. 20)
      • 20. Yang, T.-y., Li, C.-C., Tsao, F.-C.: ‘Primary-side controlled switching regulator’. US Patent 2008/0136393 A1, June 2008.
    21. 21)
      • 21. Huang, P.L., Chen, D., Chen, C.J., Chen, Y.M.: ‘An adaptive high-precision over-power protection scheme for primary-side controlled flyback converters’, IEEE Trans. Power Electron., 2011, 26, (10), pp. 28172824.
    22. 22)
      • 22. Zhang, J., Zeng, H., Jiang, T.: ‘A primary-side control scheme for high-power-factor LED driver with TRIAC dimming capability’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 46194629.
    23. 23)
      • 23. Xie, X., Wang, J., Zhao, C., Lu, Q., Liu, S.: ‘A novel output current estimation and regulation circuit for primary side controlled high power factor single-stage flyback LED driver’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 46024612.
    24. 24)
      • 24. Lee, S.T.S., Henry Shu-Hung, C., Hui, S.Y.: ‘TRIAC dimmable ballast with power equalization’, IEEE Trans. Power Electron., 2005, 20, pp. 14411449.
    25. 25)
      • 25. Eom, H., Lee, C., Yang, T., Yang, S.: ‘Design optimization of TRIAC-dimmable AC–DC converter in led lighting’. Proc. IEEE Applied Power Electronics Conf., 2012, pp. 831835.
    26. 26)
      • 26. Huang, P.L., Chen, D., Chen, C.J., Chen, Y.M.: ‘An adaptive high-precision over-power protection scheme for primary-side controlled flyback converters’, IEEE Trans. Power Electron., 2011, pp. 11.
    27. 27)
      • 27. Yan, L., Chen, B., Zheng, J.: ‘A new TRIAC dimmable LED driver control method achieves high-PF and quality-of-light’. Proc. IEEE Applied Power Electronics Conf., 2012, pp. 969974.
    28. 28)
      • 28. Freescale, MC9S12XS256RMV1 datasheet, www.freescale.com.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0300
Loading

Related content

content/journals/10.1049/iet-pel.2012.0300
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address