access icon free High-efficiency two-switch tri-state buck–boost power factor correction converter with fast dynamic response and low-inductor current ripple

Two-switch tri-state buck–boost power factor correction (PFC) converter operating in pseudo-continuous conduction mode is proposed and analysed in this study. Different from tri-state boost PFC converter, the proposed two-switch tri-state buck–boost PFC converter does not need additional power switch to provide the additional degree of control freedom. Therefore it does not increase the complexity and affect the power conversion efficiency of the PFC converter as in the case of tri-state boost PFC converter. For the proposed two-switch tri-state buck–boost PFC converter, the current control loop and voltage control loop are decoupled, a simple voltage control loop with faster dynamic response can be designed to realise output voltage regulation and the additional degree of control freedom introduced by inductor current freewheeling stage helps to achieve unity power factor control. The operation principle, the input current, the inductor current ripple, the switch component stress and the small-signal characteristics of the proposed two-switch tri-state buck–boost PFC converter are analysed. The simulation and experimental results show that the proposed two-switch tri-state buck–boost PFC converter benefits with fast dynamic response, high-efficiency and low-inductor current ripple over single-switch buck–boost PFC converter or two-switch buck–boost PFC converter operating in continuous conduction mode and discontinuous conduction mode.

Inspec keywords: power factor correction; switchgear; power convertors; power inductors; dynamic response; voltage control; electric current control

Other keywords: voltage control loop; dynamic response; continuous conduction mode; low-inductor current ripple; power switch; two-switch tri-state buck-boost PFC converter; output voltage regulation; unity power factor control; discontinuous conduction mode; switch component stress; power conversion efficiency; current control loop; small-signal characteristics; inductor current freewheeling stage; high-efficiency two-switch tri-state buck-boost power factor correction converter; pseudocontinuous conduction mode; degree of control freedom; fast dynamic response; two-switch buck-boost PFC converter; single-switch buck-boost PFC converter

Subjects: Control of electric power systems; Current control; Voltage control; Transformers and reactors; Power convertors and power supplies to apparatus; Switchgear

References

    1. 1)
      • 23. Figueres, E., Benavent, J.M., Garcera, G., Pascual, M.: ‘A control circuit with load-current injection for single-phase power-factor-correction rectifiers’, IEEE Trans. Ind. Electron., 2007, 54, (3), pp. 12721281 (doi: 10.1109/TIE.2007.891987).
    2. 2)
      • 16. Ma, D., Ki, W., Tsui, C.: ‘A pseudo-CCM/DCM SIMO switching converter with freewheel switching’, IEEE Trans. Solid-State Circuits, 2003, 38, (6), pp. 10071014 (doi: 10.1109/JSSC.2003.811976).
    3. 3)
      • 12. Midya, P., Haddad, K., Miller, M.: ‘Buck or boost tracking power converter’, IEEE Trans. Ind. Lett., 2004, 2, (4), pp. 131134.
    4. 4)
      • 9. Yingqi, Z., Sen, P.C.: ‘A new soft-switching technique for buck, boost, and buck–boost converters’, IEEE Trans. Ind. Electron., 2003, 39, (6), pp. 17751782.
    5. 5)
      • 4. Gussemé, K.D., Van de Sype, D., Van den Bossche, A., Melkebeek, J.: ‘Digitally controlled boost power-factor-correction converters operating in both continuous and discontinuous conduction mode’, IEEE Trans. Ind. Electron., 2005, 52, (1), pp. 8897 (doi: 10.1109/TIE.2004.841133).
    6. 6)
      • 6. Nussbaumer, T., Raggl, K., Kolar, J.W.: ‘Design guidelines for interleaved single-phase boost PFC circuits’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 25592573 (doi: 10.1109/TIE.2009.2020073).
    7. 7)
      • 8. Zane, R., Maksimović, D.: ‘Nonlinear-carrier control for high-power-factor rectifier based on up-down switching converters’, IEEE Trans. Power Electron., 1998, 13, (2), pp. 213221 (doi: 10.1109/63.662824).
    8. 8)
      • 15. Viswanathan, K., Oruganti, R., Srinivasan, D.: ‘Dual-mode control of tri-state boost converter for improved performance’, IEEE Trans. Power Electron., 2005, 20, (4), pp. 790797 (doi: 10.1109/TPEL.2005.850907).
    9. 9)
      • 14. Ma, D., Ki, W.: ‘Fast-transient PCCM switching converter with freewheel switching control’, IEEE Trans. Circuits Syst. II, Express Briefs, 2007, 54, (9), pp. 825829 (doi: 10.1109/TCSII.2007.900903).
    10. 10)
      • 3. Prodic, A., Chen, J., Maksimovic, D., Erickson, R.W.: ‘Self-tuning digitally controlled low-harmonic rectifier having fast dynamic response’, IEEE Trans. Power Electron., 2003, 18, (1), pp. 420428 (doi: 10.1109/TPEL.2002.807141).
    11. 11)
      • 26. Zhang, W., Feng, G., Liu, Y., Wu, B.: ‘A digital power factor correction (PFC) control strategy optimized for DSP’, IEEE Trans. Power Electron., 2004, 19, (6), pp. 14741485 (doi: 10.1109/TPEL.2004.836675).
    12. 12)
      • 24. Byungcho, C., Sung-Soo, H., Hyokil, P.: ‘Modeling and small-signal analysis of controlled on-time boost power-factor-correction circuit’, IEEE Trans. Ind. Electron., 2001, 48, (1), pp. 136142 (doi: 10.1109/41.904573).
    13. 13)
      • 21. De Gusseme, K., Van de Sype, D.M., Melkebeek, J.A.A.: ‘Design issues for digital control of boost power factor correction converters’. Proc. Conf. IEEE ISIE, 2002, pp. 731736.
    14. 14)
      • 20. Zhang, F., Xu, J., Yang, P., Cheng, Z.: ‘Single-phase two-switch PCCM buck-boost PFC converter with fast dynamic response for universal input voltage’. Proc. Conf. IEEE ECCE-Asia, 2011, pp. 205209.
    15. 15)
      • 22. Liu, K.H., Lin, Y.L.: ‘Current waveform distortion in power factor correction circuits employing discontinuous-mode boost converters’. Proc. Conf. IEEE PESC, 1989, pp. 825829.
    16. 16)
      • 18. Zhang, F., Xu, J., Yu, H., Zhou, G.: ‘Inductive idling boost converter with low inductor current-ripple and improved dynamic response for power factor correction’. Proc. Conf. IEEE ECCE, 2010, pp. 32103215.
    17. 17)
      • 13. Young-Joo, L., Khaligh, A., Emadi, A.: ‘A compensation technique for smooth transitions in non-inverting buck-boost converter’. Proc. Conf. IEEE APEC, 2009, pp. 608614.
    18. 18)
      • 1. Cheung, M.K.H., Chow, M.H.L., Tse, C.K.: ‘Practical design and evaluation of a 1 kW PFC power supply based on reduced redundant power processing principle’, IEEE Trans. Ind. Electron., 2008, 55, (2), pp. 665673 (doi: 10.1109/TIE.2007.909078).
    19. 19)
      • 7. Watson, R., Hua, G.C., Lee, F.C.: ‘Characterization of an active clamp flyback topology for power factor correction applications’, IEEE Trans. Power Electron., 1996, 11, (1), pp. 191198 (doi: 10.1109/63.484432).
    20. 20)
      • 10. Jingquan, C., Maksimović, D., Erickson, R.W.: ‘Analysis and design of a low-stress buck-boost converter in universal-input PFC applications’, IEEE Trans. Power Electron., 2006, 21, (2), pp. 320329 (doi: 10.1109/TPEL.2005.869744).
    21. 21)
      • 17. Zhang, F., Xu, J., Wang, J., Yu, H.: ‘A novel tri-state boost PFC converter with fast dynamic performance’. Proc. Conf. IEEE ICIEA, 2010, pp. 21042109.
    22. 22)
      • 2. Erickson, R.W., Maksimović, D.: ‘Fundamentals of Power Electronics’ (Kluwer, Norwell, MA, 2001, 2nd edn.).
    23. 23)
      • 11. Andersen, G.K.: ‘Average current control of a buck+boost PFC rectifier for low cost motor drives’. Proc. Conf. IEEE NORPIE, 2000, pp. 174179.
    24. 24)
      • 19. Zhang, F., Xu, J.: ‘A novel PCCM boost PFC converter with fast dynamic response’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 42074216 (doi: 10.1109/TIE.2010.2098368).
    25. 25)
      • 25. Dowlatabadi, R., Monfared, M., Golestan, S., Hassanzadeh, A.: ‘Modelling and controller design for a non-inverting buck-boost chopper’. Proc. Conf. IEEE ICEEI, 2011, pp. 14.
    26. 26)
      • 5. Athab, H.S.: ‘A duty cycle control technique for elimination of line current harmonics in single-state DCM boost PFC circuit’. Proc. Conf. IEEE TENCON, 2008, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0097
Loading

Related content

content/journals/10.1049/iet-pel.2012.0097
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading