Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Analysis and improvement of performance in LCL filter-based PWM rectifier/inverter application using hybrid damping approach

A hybrid passive-active damping solution with improved system stability margin and enhanced dynamic performance is proposed for high power grid interactive converters. In grid connected active rectifier/inverter application, line side LCL filter improves the high frequency attenuation and makes the converter compatible with the stringent grid power quality regulations. Passive damping though offers a simple and reliable solution but it reduces overall converter efficiency. Active damping solutions do not increase the system losses but can guarantee the stable operation up to a certain speed of dynamic response which is limited by the maximum bandwidth of the current controller. This paper examines this limit and introduces a concept of hybrid passive-active damping solution with improved stability margin and high dynamic performance for line side LCL filter based active rectifier/inverter applications. A detailed design, analysis of the hybrid approach and trade-off between system losses and dynamic performance in grid connected applications are reported. Simulation and experimental results from a 10 kVA prototype demonstrate the effectiveness of the proposed solution. An analytical study on system stability and dynamic response with the variations of various controller and passive filter parameters is presented.

References

    1. 1)
      • 6. Wang, T.C.Y., Ye, Z., Sinha, G., Yuan, X.: ‘Output filter design for a grid connected three-phase inverter’. GE Global Research Center 2003 report.
    2. 2)
      • 16. Fujita, H., Yamasaki, T., Akagi, H.: ‘A hybrid active filter for damping of harmonic resonance in industrial power systems’, IEEE Trans. Power Electron., 2000, 15, (2), pp. 215222.
    3. 3)
      • 10. Xing, L., Feng, F., Sun, J.: ‘Optimal damping of EMI filter input impedance’, IEEE Trans. Ind. Appl., 2011, 47, (3), pp. 14321440.
    4. 4)
      • 3. Rodriguez, J.R., Dixxon, J.W., Espinoza, J.R., Pontt, J., Lezana, P.: ‘PWM regenerative rectifier: state of art’, IEEE Trans. Ind. Electron., 2005, 52, (1), pp. 522.
    5. 5)
      • 22. Twining, E., Holmes, D.G.: ‘Grid current regulation of a three-phase voltage source inverter with an LCL input filter’, IEEE Trans. Power Electron., 2003, 18, (3), pp. 888895.
    6. 6)
      • 9. Mitchell, D.M.: ‘Damped EMI filters for switching regulators’, IEEE Trans. Electromagn. Compat., 1978, 20, (3), pp. 457463.
    7. 7)
      • 4. Tang, Y., Loh, P.C., Wang, P., Choo, F.H., Gao, F., Blaabjerg, F.: ‘Generalized design of high performance shunt active power filter with output LCL filter’, IEEE Trans. Ind. Electron., 2012, 59, (3), pp. 14431452.
    8. 8)
      • 19. Liserre, M., Blaabjerg, F., Hansen, S.: ‘Design and control of an LCL-filter-based three-phase active rectifier’, IEEE Trans. Ind. Appl., 2005, 41, (5), pp. 12811291.
    9. 9)
      • 14. Sato, Y., Kataoka, T.: ‘A current-type PWM rectifier with active damping function’, IEEE Trans. Ind. Appl., 1996, 32, (3), pp. 533541.
    10. 10)
      • 15. Blasko, V., Kaura, V.: ‘A novel control to actively damp resonance in input LC filter of a three phase voltage source converter’, IEEE Trans. Ind. Appl., 1997, 33, (2), pp. 542550.
    11. 11)
      • 23. Xu, A., Xu, Z., Xie, S., Zou, M.: ‘Study on dual-loop grid current control scheme for grid-connected inverter with an LCL-filter’, Proc. Fourth IEEE Industrial Electronics and Applications, ICIEA, 2009, 25, (27), pp. 32003203.
    12. 12)
      • 11. Erickson, R.W.: ‘Optimal single resistors damping of input filters’. Fourteenth Annual Applied Power Electronics Conf. Exposition, 1999 (APEC ’99), 14–18 March 1999, vol. 2, pp. 10731079.
    13. 13)
      • 24. Zhou, Z., Unsworth, P.J., Holland, P.M., Igic, P.: ‘Design and analysis of a feed-forward control scheme for a three-phase voltage source pulse width modulation rectifier using sensorless load current signal’, IET Power Electron., 2009, 2, (4), pp. 421430.
    14. 14)
      • 18. Cespedes, M., Beechner, T., Xing, L., Sun, J.: ‘Stabilization of constant-power loads by passive impedance damping’, Proc. IEEE APEC, 2010, 21, (25), pp. 21742180.
    15. 15)
      • 17. Luo, A., Shuai, Z., Zhu, W., Shen, Z.J., Tu, C.: ‘Design and application of a hybrid active power filter with injection circuit’, IET Power Electron., 2010, 3, (1), pp. 5464.
    16. 16)
      • 2. Blaabjerg, F., Teodorescu, R., Liserre, M., Timbus, A.V.: ‘Overview of control and grid synchronization for distributed power generation systems’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 13981409.
    17. 17)
      • 21. Wu, W., He, Y., Blaabjerg, F.: ‘An LLCL power filter for single-phase grid-tied inverter’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 782789.
    18. 18)
      • 8. Vlatkovic, V., Borojevic, D., Lee, F.C.: ‘Input filter design for power factor correction circuits’, IEEE Trans. Power Electron., 1996, 11, (1), pp. 199205.
    19. 19)
      • 26. Teodorescu, R., Blaabjerg, F., Liserre, M., Loh, P.C.: ‘Proportional-resonant controllers and filters for grid-connected voltage-source converters’, IEE Proc. Electr. Power Appl., 2006, 153, (5), pp. 750762.
    20. 20)
      • 20. Channegowda, P., John, V.: ‘Filter optimization for grid interactive voltage source inverters’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 41064114.
    21. 21)
      • 25. Thomsen, S., Hoffmann, N., Fuchs, F.W.: ‘PI control, pi-based state space control, and model-based predictive control for drive systems with elastically coupled loads – a comparative study’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 36473657.
    22. 22)
      • 5. Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., et al: ‘Power elctronic systems for the grid integration of renewable energy sources: a survey’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 10021016.
    23. 23)
      • 1. IEEE recommended practices and requirements for harmonic control in electrical power systems, IEEE Standard 519, 1992.
    24. 24)
      • 13. Bierhoff, M.H., Fuchs, F.W.: ‘Active damping for three-phase PWM rectifiers with high-order line-side filters’, IEEE Trans. Ind. Electron., 2009, 56, (2), pp. 371379.
    25. 25)
      • 7. Tang, Y., Loh, P.C., Wang, P., Choo, F.H., Tan, K.K.: ‘Improved one-cycle-control scheme for three-phase active rectifiers with input inductor-capacitor-inductor filters’, IET Power Electron., 2011, 4, (5), pp. 603614.
    26. 26)
      • 12. Xing, L., Sun, J.: ‘Optimal damping of multi-stage EMI filters’, Proc. IEEE APEC, 2011, 6, (11), pp. 17211728.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2012.0032
Loading

Related content

content/journals/10.1049/iet-pel.2012.0032
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address