High-voltage DC-feeder solution for electric railways

Access Full Text

High-voltage DC-feeder solution for electric railways

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

For AC railway power supply systems with a different frequency than the public grid, high-voltage AC transmission lines are common, connected to the catenary by transformers. This study suggests an alternative design based on an high-voltage DC (HVDC)-feeder, which is connected to the catenary by converters. Such an HVDC line would also be appropriate for DC-fed railways and AC-fed railways working at a public-grid frequency. The converter stations between the public grid and the HVDC-feeder can be sparsely distributed, not denser than on 100 km distances, whereas the converters connecting the HVDC-feeder to the catenary are distributed denser. Their ratings can be lower than present-day substation transformers or converters, since the power flows can be fully controlled. Despite a relatively low-power rating, the proposed converters can be highly efficient because of the use of medium frequency technology. The proposed feeding system results in lower material usage, lower losses and higher controllability compared with the present solutions. Simulations of the proposed solution show clear advantages regarding transmission losses and voltages compared with conventional systems, especially for cases with weak feeding, and when there are substantial amounts of regeneration from the trains.

Inspec keywords: power grids; load flow; power transmission lines; HVDC power transmission; losses; power transformers; power supplies to apparatus; railway electrification; substations; HVDC power convertors

Other keywords: high-voltage AC transmission line; present-day substation transformer; high-voltage DC-feeder system; DC-fed railway; converter station; HVDC; electric railway; medium frequency technology; power flow; AC railway power supply system; transmission loss; public-grid frequency

Subjects: Transformers and reactors; a.c. transmission; Transportation; Power convertors and power supplies to apparatus; Substations; d.c. transmission

References

    1. 1)
      • Hugo, N., Stefanutti, P., Pellerin, M., Akdag, A.: `Power electronics traction transformer', 2007 European Conf. Power Electronics and Applications, 2007, Aalborg, Denmark, p. 1–10.
    2. 2)
      • P. Ladoux , F. Alvarez , G.J. Hervé Caron , J.-P. Perret . A new structure of power 1500 V catenary: the system 2×1500 V (original title in French). Revue Genérale des Chemins de Fer , 21 - 31
    3. 3)
    4. 4)
      • U. Behmann , K. Rieckhoff . Converter stations in 50 or 60 Hz traction power supply. Rail Technol. Rev. , 4 , 8 - 14
    5. 5)
      • GAMS: ‘Solver descriptions’ July 2011.
    6. 6)
      • ‘Kraftförsörjningsanläggningar. omriktare för banmatning’, Standard BVS 1543.17000, Banverket.
    7. 7)
      • T. Schütte , U. Behmann . Converters in the railway power supply – worldwide chances (original title in german). Elektr. Bahnen , 254 - 257
    8. 8)
    9. 9)
      • Boullanger, B.: `Modeling and simulation of future railways', 2009, Master's, Royal Institute of Technology (KTH).
    10. 10)
      • ‘Kraftförsörjningsanläggningar. Elektriska krav på fordon med avseende på kompatibilitet med infrastrukturen och andra fordon’, Standard BVS 543.19300, Banverket.
    11. 11)
      • Taaveniku L., Lindmark A. ‘Slutrapport – Kraftförsörjning, Botniabanan 130 kV matarledning’, Förstudie BRNB 2003:14, Banverket, March 2004. http://www.trafikverket.se/PageFiles/26518/BB_kraftforsorjning_Slutrapport_20040323.pdf.
    12. 12)
    13. 13)
      • Abrahamsson, L.: `Railway power supply models and methods for long-term investment analysis', 2008, Licentiate, Technical report, Royal Institute of Technology (KTH), Stockholm, Sweden.
    14. 14)
      • A. Bülund , P. Deutschmann , B. Lindahl . Circuitry of overhead contact line network at Swedish railway Banverket (original title in German). Elektr. Bahnen , 4 , 184 - 194
    15. 15)
      • Steiner, M., Reinold, H.: `Medium frequency topology in railway applications', 2007 European Conf. Power Electronics and Applications, 2007, pp. 110.
    16. 16)
      • Vial, R., Riu, D., Retiere, N.: `Simulating calculations and optimization design of a new HVDC supply power for light rail system', IECON 2010 – 36th Annual Conf. IEEE Industrial Electronics Society, 2010, Glendale, AZ, p. 2364–2369.
    17. 17)
      • U. Behmann , T. Schütte . Static converters – the future of traction power supply. Rail Technol. Rev. , 9 - 15
    18. 18)
      • GAMS Development Corporation: ‘Welcome to the GAMS Home Page!’, April 2008.
    19. 19)
    20. 20)
      • Trafikverket: ‘Bandata’. http://www.trafikverket.se/Privat/Vagar-och-jarnvagar/Sveriges-jarnvagsnat/Bandata/.
    21. 21)
      • Lejonberg T.: ‘Plant for feeding alternating voltage’, Patent, May 1998. http://www.wipo.int/patentscope/search/en/WO1998055339.
    22. 22)
      • Goodman, C.J.: `Overview of electric railway systems and the calculation of train performance', 2008 IET Professional Development Course on Electric Traction Systems, 2008, p. 1–24.
    23. 23)
      • Beertens, J., Cole, S., Belmans, R.: `A sequential AC/DC power flow algorithm for networks containing multi-terminal VSC HVDC systems', 2010 IEEE Power and Energy Society General Meeting, 2010, p. 1–7.
    24. 24)
      • Kjellqvist, T.: `On design of a compact primary switched conversion system for electric railway propulsion', 2009, PhD, Royal Institute of Technology (KTH), June, TRITA-EE 2009:029.
    25. 25)
    26. 26)
      • Friman, E.: `Impedanser fr KTL och 132 kV, 30 kV och 15 kV ML', July 2006, Technical report BKE 02/28.
    27. 27)
      • Norwegian national railway administration (Jernbaneverket): ‘Simulations Report, Railway Electric Power Supply, Ofotsbanen (original title in Norwegian)’, Technical report, Norwegian National Railway Administration (Jernbaneverket), 2007.
    28. 28)
      • Olofsson, M.: `Power flow analysis of the Swedish railway electrical system', 1993, Licentiate, Technical report, Royal Institute of Technology (KTH), Stockholm, Sweden.
    29. 29)
    30. 30)
      • Pilo, E., Ruoco, L., Fernández, A.: `A reduced representation of 2×25 kV electrical systems for high-speed railways', Proc. 2003 IEEE/ASME Joint Rail Conf., April 2003, p. 199–205.
    31. 31)
      • U. Behmann , K. Rieckhoff . Umrichterwerke bei 50 Hz-Bahnen – Vorteile am Beispiel der Chinese railways/converter stations in 50 Hz traction – advantages in case of Chinese railways. Elektr. Bahnen , 63 - 74
    32. 32)
      • Abrahamsson, L., Söder, L.: `Railway power supply investment decisions considering the voltage drops – assuming the future traffic to be known', 15thInt. Conf. Intelligent System Applications to Power Systems, 2009 (ISAP'09), 2009, p. 1–6.
    33. 33)
      • M. Olofsson . (1996) Optimal operation of the Swedish railway electrical system-an application of optimal power flow.
    34. 34)
    35. 35)
      • Östlund S.: ‘A primary switched converter system for traction applications. No. 9201 in Trita-EMK’, 1992.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2011.0219
Loading

Related content

content/journals/10.1049/iet-pel.2011.0219
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading