Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design-oriented model and critical inductance method for long life isolated power converters

For moderate-to-high power converters, electrolytic capacitor is an indispensable component. Life of electrolytic capacitor is critical compared with its semi-conductor counterparts. This study proposes a new model to analyse the converter life and to design the circuit to lower the current ripple in the electrolytic capacitor in order to reach for longer converter life. Two-stage power converter (a power factor correction converter followed by a DC–DC converter) is the typical practice for AC–DC converter. Forward converter and Flyback converters are the common choices for the downstream converter for this power range. Comparison between two modes of operation, discontinuous conduction mode and continuous conduction mode (CCM), for the two converter topologies shows a typical CCM Forward converter to have almost 300 times longer life than a CCM Flyback converter. Another focus of the work is to analyse the effect of circuit parameters on the converter life. A critical inductance is established to guide the design for long life converters.

References

    1. 1)
      • 13. Braham, A., Lahyani, A., Venet, P., Rejeb, N.: ‘Recent developments in fault detection and power loss estimation of electrolytic capacitors’, IEEE Trans. Power Electron., 2010, 25, (1), pp. 3343 (doi: 10.1109/TPEL.2009.2026749).
    2. 2)
      • 14. Gu, L., Ruan, X., Xu, M., Yao, K.: ‘Means of eliminating electrolytic capacitor in AC/DC power supplies for LED lightings’, IEEE Trans. Power Electron., 2009, 24, (5), pp. 13991408 (doi: 10.1109/TPEL.2009.2016662).
    3. 3)
      • 6. Military Handbook 217 F, ‘Reliability prediction of electronic equipment’, Revision F, December 1991, Notice 1, 10 July 1992, Notice 2, February 28, 1995.
    4. 4)
      • 2. Aeloiza, E.C., Kim, J.H., Ruminot, P., Enjeti, P.N.: ‘A real time method to estimate electrolytic capacitor condition in PWM adjustable speed drives and uninterruptible power supplies’. IEEE 36th Power Electronics Specialists Conf., 2005. PESC ’05, 16 June 2005, pp. 28672872.
    5. 5)
      • 23. CDE Cornell Dubilier: ‘Application Guide Aluminum Electrolytic Capacitors’.
    6. 6)
      • 10. Gasperi, M.L.: ‘Life prediction modelling of bus capacitors in AC variable-frequency drives’, IEEE Trans. Ind. Appl., 2005, 41, (6), pp. 14301435 (doi: 10.1109/TIA.2005.858258).
    7. 7)
      • 12. Kieferndorf, F.D., Forster, M., Lipo, T.A.: ‘Reduction of DC-bus capacitor ripple current with PAM/PWM converter’, IEEE Trans. Ind. Appl., 2004, 40, (2), pp. 607614 (doi: 10.1109/TIA.2004.824495).
    8. 8)
      • 11. Huber, M., Amrhein, W., Silber, S., Reisinger, M., Knecht, G., Kastinger, G.: ‘Ripple current reduction of DC link electrolytic capacitors by switching pattern optimisation’. IEEE 36th Power Electronics Specialists Conf., 2005. PESC ’05, 16 June 2005, pp. 18751880.
    9. 9)
      • 22. Fairchild Semiconductor: ‘Design guidelines for off-line flyback converters using fairchild power switch (FPS)’. Application Note AN4137, 2003, Rev. 1.2.0, http://www.fairchildsemi.tv/an/AN/AN-4137.pdf.
    10. 10)
      • 18. Lahyani, A., Venet, P., Grellet, G., Viverge, P.-J.: ‘Failure prediction of electrolytic capacitors during operation of a switchmode power supply’, IEEE Trans. Power Electron., 1998, 13, (6), pp. 11991207 (doi: 10.1109/63.728347).
    11. 11)
      • 7. Wiesinger, T., Ertl, H.: ‘A novel real time monitoring unit for PWM converter electrolytic capacitors’. IEEE Power Electronics Specialists Conf., 2008. PESC 2008, 15–19 June 2008, pp. 523528.
    12. 12)
      • 3. Ma, H., Wang, L.: ‘Fault diagnosis and failure prediction of aluminum electrolytic capacitors in power electronic converters’. IEEE Industrial Electronics Society 31st Annual Conf., IECON 2005, 6 November 2005.
    13. 13)
      • 15. Chen, Y.-M., Wu, H.-C., Chou, M.-W., Lee, K.-Y.: ‘Online failure prediction of the electrolytic capacitor for LC filter of switching-mode power converters’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 400406 (doi: 10.1109/TIE.2007.903975).
    14. 14)
      • 17. Harada, K., Katsuki, A., Fujiwara, M.: ‘Use of ESR for deterioration diagnosis of electrolytic capacitor’, IEEE Trans. Power Electron., 1986, 9, (3), pp. 293299 (doi: 10.1109/63.261004).
    15. 15)
      • 16. Rubycon Corporation: ‘Technical Notes for Electrolytic Capacitor’.
    16. 16)
      • 5. Maddula, S.K., Balda, J.C.: ‘Lifetime of electrolytic capacitors in regenerative induction motor drives’. IEEE 36th Power Electronics Specialists Conf., 2005. PESC ’05, 16 June 2005, pp. 153159.
    17. 17)
      • 1. Sankaran, V.A., Rees, F.L., Avant, C.S.: ‘Electrolytic capacitor life testing and prediction’. Industry Applications Conf., 1997. Thirty-Second IAS Annual Meeting, IAS ’97, 5–9 October 1997, vol. 2, pp. 10581065.
    18. 18)
      • 19. Sanjaya, Maniktala: ‘Switching power supply design & optimization’ (McGraw-Hill Professional, 2005), pp. 57, 71–76, 109–121, 324, 361–369.
    19. 19)
      • 9. Gasperi, M.L.: ‘Life prediction model for aluminum electrolytic capacitors’. Industry Applications Conf., 1996. Thirty-First IAS Annual Meeting, IAS ’96, 6–10 October 1996, vol. 3, pp. 13471351.
    20. 20)
      • 25. Fairchild Semiconductor: ‘Design guidelines for off-line Forward converters using fairchild power switch (FPSTM)’. Application Note AN4134, 2003, Rev. 1.0.0, http://www.fairchildsemi.com/an/AN/AN-4134.pdf.
    21. 21)
      • 24. Reliability Prediction of Electronic Equipment, Military Handbook 217 F, 1995.
    22. 22)
      • 8. Stevens, J., Shaffer, J.S., Vandenham, J.T.: ‘The service life of large aluminum electrolytic capacitors: effects of construction and application’, IEEE Trans. Ind. Appl., 2002, 38, (5), pp. 14411446 (doi: 10.1109/TIA.2002.802922).
    23. 23)
      • 4. Riz, A., Fodor, D., Klug, O., Karaffy, Z.: ‘Inner gas pressure measurement based life-span estimation of electrolytic capacitors’. 13th Power Electronics and Motion Control Conf., 2008. EPE-PEMC 2008, 1–3 September 2008, pp. 20962101.
    24. 24)
      • 21. Pang, H.M., Pong Bryan, M.H.: ‘A method to analysis and design for long life power converter’. Twenty-Fifth Annual IEEE Applied Power Electronics Conf. Exposition, APEC 2010, pp. 18571864.
    25. 25)
      • 20. Rantec Power Systems: ‘Power supply hold-up considerations’. HDC Application Note HDMA-112, October 19, 2006, Rev. E, http://www.rantec.com/L2A_Prod/LowVoltage/LVAN/LVAN_HDMA112.pdf.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2010.0214
Loading

Related content

content/journals/10.1049/iet-pel.2010.0214
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address