Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

On comparing the symmetrical and non-symmetrical selective harmonic elimination pulse-width modulation technique for two-level three-phase voltage source converters

On comparing the symmetrical and non-symmetrical selective harmonic elimination pulse-width modulation technique for two-level three-phase voltage source converters

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Selective harmonic elimination pulse-width modulation (SHE-PWM) techniques offer a tight control of the harmonic spectrum of a given voltage waveform generated by a power electronic converter along with a low number of switching transitions. These optimal switching transitions can be calculated through Fourier theory, and for a number of years quarter-wave and half-wave symmetries have been assumed when formulating the problem. It is shown recently that symmetry requirements can be relaxed as a constraint. This changes the way the problem is formulated and different solutions can be found. This study presents different formulations of the problem, namely quarter-, half-wave symmetry and non-symmetrical waveform. A critical evaluation and comparison between the three schemes are reported here based on various aspects, such as number of eliminated harmonics, harmonic spectrum profile, harmonic phasing, converter performance, computational time and solution space limitations. Selected simulation and experimentally validated results are presented to confirm the theoretical work of this study. This manuscript is a revised and extended version of earlier paper that was presented at the IEEE PESC 2008, Rhodes, Greece, 15–19 June 2008, and has not been submitted to any other journal for consideration and possible publication.

References

    1. 1)
      • K. Sundareswaran , K. Jayant , T.N. Shanavas . Inverter harmonic elimination through a colony of continuously exploring ants. IEEE Trans. Ind. Electron. , 5 , 2558 - 2565
    2. 2)
      • F.Z. Peng , J.S. Lai . Dynamic performance and control of a static Var generator using cascaded multilevel inverters. IEEE Trans. Ind. Appl. , 3 , 748 - 755
    3. 3)
      • V.G. Agelidis , A. Balouktsis , C. Cossar . On attaining the multiple solutions of selective harmonic elimination PWM three-level waveforms through function minimization. IEEE Trans. Ind. Electron. , 3 , 996 - 1004
    4. 4)
      • K. Sundareswaran , M. Chandra . Evolutionary approach for line current harmonic reduction in AC/DC converters. IEEE Trans. Ind. Electron. , 3 , 716 - 719
    5. 5)
      • M.S.A. Dahidah , V.G. Agelidis , M.V.C. Rao . Hybrid genetic algorithm approach for selective harmonic control. Energy Convers. Manage. , 2 , 131 - 142
    6. 6)
      • C. Schauder , M. Gernhardt , E. Stacey . Development of a ±100 MVAr static condenser for voltage control of transmission systems. IEEE Trans. Power Deliv. , 3 , 1486 - 1496
    7. 7)
      • R.A. Jabr . Solution trajectories of the harmonic-elimination problem. IEE Proc. Electr. Power Appl. , 1 , 97 - 104
    8. 8)
      • Wells, J.R.: `Generalized selective harmonic control', 2006, PhD, University of Illinois at Urbana-Champaign, Urbana, Illinois.
    9. 9)
      • M.S.A. Dahidah , M.V.C. Rao . A hybrid genetic algorithm for selective harmonic elimination PWM AC/AC converter control. Electr. Eng. , 4 , 285 - 291
    10. 10)
      • S. Bernet . Recent developments of high power converters for industry and traction applications. IEEE Trans. Power Electron. , 6 , 1102 - 1116
    11. 11)
      • L. Xu , V.G. Agelidis . VSC transmission system using flying capacitor multilevel converters and hybrid PWM control. IEEE Trans. Power Deliv. , 1 , 693 - 702
    12. 12)
      • J.N. Chiasson , L.M. Tolbert , K.J. Mckenzie , Z. Du . A complete solution to the harmonic elimination problem. IEEE Trans. Power Electron. , 2 , 491 - 499
    13. 13)
      • B. Ozpineci , L.M. Tolbert , J.N. Chiasson . Harmonic optimization of multilevel converters using genetic algorithms. IEEE Power Electron. Lett. , 3 , 92 - 95
    14. 14)
      • J.R. Wells , B.M. Nee , P.L. Chapman , P.T. Krein . Selective harmonic control: a general problem formulation and selected solutions. IEEE Trans. Power Electron. , 1337 - 1345
    15. 15)
      • Dahidah, M.S.A., Agelidis, V.G.: `Comparative evaluation of symmetrical and non-symmetrical bipolar SHE-PWM techniques', 39thInt. IEEE-PESC, Rhodes, 15–19 June 2008, Greece, p. 2594–2599.
    16. 16)
      • Powersim Inc. PSIM software package, version 6.0, http://www.powersimtech.com.
    17. 17)
      • A. Çetin , M. Ermis . VSC-based D-STATCOM with selective harmonic elimination. IEEE Trans. Ind. Electron. , 3 , 1000 - 1015
    18. 18)
      • A.M. Trzynadlowski , S. Legowski . Application of neural networks to the optimal control of three-phase voltage-controlled inverters. IEEE Trans. Power Electron. , 4 , 397 - 404
    19. 19)
      • H.S. Patel , R.G. Hoft . Generalized techniques of harmonic elimination and voltage control in Thyristor inverters: part II—voltage control techniques. IEEE Trans. Ind. Appl. , 5 , 666 - 673
    20. 20)
      • N. Flourentzou , V.G. Agelidis . Optimized modulation for AC–DC harmonic immunity in VSC HVDC transmission. IEEE Trans. Power Deliv. , 3 , 592 - 602
    21. 21)
      • B. Fardanesh . Optimal utilization, sizing, and steady-state performance comparison of multiconverter VSC-based FACTS controllers. IEEE Trans. Power Electron. , 3 , 1321 - 1327
    22. 22)
      • M.S.A. Dahidah , V.G. Agelidis , M.V.C. Rao . On abolishing symmetry requirements in the formulation of a five-level selective harmonic elimination pulse width modulation technique. IEEE Trans. Power Electron. , 6 , 1833 - 1837
    23. 23)
      • Dahidah, M.S.A., Agelidis, V.G.: `Non-symmetrical selective harmonic elimination PWM techniques: the unipolar waveform', 38thInt. IEEE-PESC, 17–21 June 2007, Orlando, Florida, USA, p. 1885–1891.
    24. 24)
      • V.G. Agelidis , A. Balouktsis , I. Balouktsis . On applying a minimization technique to the harmonic elimination PWM control: the bipolar waveform. IEEE Power Electron. Lett. , 2 , 41 - 44
    25. 25)
      • Wells, J.R., Chapman, P.L., Krein, P.T.: `Generalization of selective harmonic control/elimination', Record IEEE Power Electronics Specialists Conf., 2005, p. 1358–1362.
    26. 26)
      • H.S. Patel , R.G. Hoft . Generalized techniques of harmonic elimination and voltage control in thyristor inverters: part I—harmonic elimination. IEEE Trans. Ind. Appl. , 3 , 310 - 317
    27. 27)
      • J. Napoles , J.I. Leon , R. Portillo , L.G. Franquelo , M.A. Aguirre . Selective harmonic mitigation technique for high power converters. IEEE Trans. Ind. Electron. , 7 , 2315 - 2323
    28. 28)
      • P.N. Enjeti , P.D. Ziogas , F. Lindsay . Programmed PWM techniques to eliminate harmonics: a critical evaluation. IEEE Trans. Ind. Appl. , 2 , 302 - 316
    29. 29)
      • N. Flourentzou , V.G. Agelidis , G.D. Demetriades . VSC-based HVDC power transmission systems: an overview. IEEE Trans. Power Electron. , 3 , 592 - 602
    30. 30)
      • J.R. Wells , X. Geng , P.L. Chapman , P.T. Krein , B.M. Nee . Modulation-based harmonic elimination. IEEE Trans. Power Electron. , 1 , 336 - 340
    31. 31)
      • Mathematica 6.0 Wolfram Research, Inc: http://www.wolfram.com/products/mathematica/index.html.
    32. 32)
      • Bresnahan, K., Zelaya, H., De La, P., Teodorescu, R., Evans, P.D.: `Harmonic analysis of SVM and experimental verification in a general purpose induction motor test rig', Record of Power Electronics and Variable Speed Drives, 26–28 October 1994, p. 352–356.
    33. 33)
      • V.G. Agelidis , A. Balouktsis , I. Balouktsis , C. Cossar . Multiple sets of solutions for harmonic elimination PWM bipolar waveforms: analysis and experimental verification. IEEE Trans. Power Electron. , 415 - 421
    34. 34)
      • T.J. Liang , R.M. O'Connnell , R.G. Hoft . Inverter harmonic reduction using Walsh function harmonic elimination method. IEEE Trans. Ind. Electron. , 6 , 971 - 982
    35. 35)
      • N. Kanao , Y. Hayashi , J. Matsuki . Analysis of even harmonics generation in an isolated electric power system. J. Electr. Eng. Jpn. , 2 , 56 - 63
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2009.0306
Loading

Related content

content/journals/10.1049/iet-pel.2009.0306
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address